Neural network-based model predictive control system for optimizing building automation and management systems of sports facilities

被引:60
|
作者
Elnour, Mariam [1 ]
Himeur, Yassine [1 ]
Fadli, Fodil [1 ]
Mohammedsherif, Hamdi [1 ]
Meskin, Nader [2 ]
Ahmad, Ahmad M. [1 ]
Petri, Ioan [3 ]
Rezgui, Yacine [3 ]
Hodorog, Andrei [3 ]
机构
[1] Qatar Univ, Dept Architecture & Urban Planning, Doha, Qatar
[2] Qatar Univ, Dept Elect Engn, Doha, Qatar
[3] Cardiff Univ, BRE Inst Sustainable Engn, Sch Engn, Cardiff, ON, Canada
关键词
Model predictive control; Neural networks; Energy management and optimization; Sports facilities; ENERGY-CONSUMPTION; THERMAL COMFORT; SWIMMING POOLS; IMPLEMENTATION; CHALLENGES; EFFICIENCY;
D O I
10.1016/j.apenergy.2022.119153
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sports facilities are considered complex buildings due to their high energy demand and occupancy profiles. Therefore, their management and optimization are crucial for reducing their energy consumption and carbon footprint while maintaining an appropriate indoor environmental quality. This work is part of the SportE3.Q project, which aims to manage and optimize the operation of sports facilities. A neural network (NN)-based model predictive control (MPC) management and optimization system is proposed for the heating, ventilation, and air conditioning (HVAC) system of a sports hall in the sports and events complex of Qatar University (QU). The proposed approach provides an integrated dynamic optimization method that accounts for future system behavior in the decision-making process, consisting of a prediction element and an optimizer. A NN is used to implement the dynamic prediction element of the MPC system and is compared with other machine learning (ML)-based models, which are support vector regression (SVR), k-nearest neighbor (kNN), and decision trees (DT). The NN-based model outperforms the other ML models with an average root mean squared error (RMSE) of around 0.06 between the actual and the predicted values, and an average R of 0.99 as NNs are popular for their high accuracy and reliability. Two schemes of the proposed NN-based MPC system are investigated for managing and optimizing the operation of the hall's HVAC system for enhanced energy use and indoor environment quality, as wel l as for providing occupancy profile recommendations to aid the facilities' managers in handling their operation. In alignment with the objective of the SportE3.Q project, up to 46% energ y reduction was achieved while jointly optimizing the thermal comfort and indoor air quality. In addition, Scheme 2 of the proposed system provided productive occupancy recommendations for a healthier indoor environment.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] A Neural Network-based Model Predictive Control Approach for Buildings Comfort Management
    Eini, Roja
    Abdelwahed, Sherif
    2020 IEEE INTERNATIONAL SMART CITIES CONFERENCE (ISC2), 2020,
  • [2] A predictive approach based on neural network models for building automation systems
    Department of Environmental Sciences, Informatics and Statistics University Ca Foscari of Venice, Dorsoduro 2137, Venice
    30123, Italy
    不详
    30124, Italy
    不详
    38068, Italy
    Smart Innov. Syst. Technol., (253-262):
  • [3] Wavelet fuzzy neural network-based predictive control system
    El-Rabaie, NM
    Awad, HA
    Mahmoud, TA
    MELECON 2004: PROCEEDINGS OF THE 12TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1-3, 2004, : 307 - 310
  • [4] Adaptive neural network-based predictive control for nonlinear dynamical systems
    Shin, SC
    Bien, Z
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2003, 9 (01): : 31 - 43
  • [5] Neural Network-Based Model Predictive Control: Fault Tolerance and Stability
    Patan, Krzysztof
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2015, 23 (03) : 1147 - 1155
  • [6] Neural Network-Based Model Predictive Control of a Servo-Hydraulic Vehicle Suspension System
    Dahunsi, O. A.
    Pedro, J. O.
    Nyandoro, O. T.
    2009 AFRICON, VOLS 1 AND 2, 2009, : 742 - 747
  • [7] Facilitating the implementation of neural network-based predictive control to optimize building heating operation
    Savadkoohi, Marjan
    Macarulla, Marcel
    Casals, Miquel
    ENERGY, 2023, 263
  • [8] Network-based predictive control of multirate systems
    Zou, Y.
    Chen, T.
    Li, S.
    IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (07): : 1145 - 1156
  • [9] Neural network-based model reference adaptive control system
    Ince, David L.
    Bialasiewicz, Jan T.
    Wall, Edward T.
    Proceedings of the Workshop on Neural Networks: Academic/Industrial/NASA/Defense, 1991,
  • [10] Neural network-based model reference adaptive control system
    Patiño, HD
    Liu, DR
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2000, 30 (01): : 198 - 204