Connections for weighted projective lines

被引:2
|
作者
Crawley-Boevey, William [1 ]
机构
[1] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
关键词
KLEINIAN SINGULARITIES; ALGEBRAS; DEFORMATIONS;
D O I
10.1016/j.jpaa.2010.02.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a notion of a connection on a coherent sheaf on a weighted projective line (in the sense of Geigle and Lenzing). Using a theorem of Hubner and Lenzing we show, under a mild hypothesis, that if one considers coherent sheaves equipped with such a connection, and one passes to the perpendicular category to a nonzero vector bundle without self-extensions, then the resulting category is equivalent to the category of representations of a deformed preprojective algebra. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 50 条
  • [1] Weighted projective lines and applications
    Lenzing, Helmut
    REPRESENTATIONS OF ALGEBRAS AND RELATED TOPICS, 2011, : 153 - 187
  • [2] WEIGHTED PROJECTIVE LINES WITH WEIGHT PERMUTATION
    Han, Lina
    Wang, Xintian
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (01) : 219 - 236
  • [3] Nilpotent operators and weighted projective lines
    Kussin, Dirk
    Lenzing, Helmut
    Meltzer, Hagen
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 685 : 33 - 71
  • [4] Recollements and ladders for weighted projective lines
    Ruan, Shiquan
    JOURNAL OF ALGEBRA, 2021, 578 : 213 - 240
  • [5] Schofield Induction for Sheaves on Weighted Projective Lines
    Kedzierski, Dawid
    Meltzer, Hagen
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (06) : 2033 - 2039
  • [6] Weighted projective lines and rational surface singularities
    Iyama, Osamu
    Wemyss, Michael
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2019, 3
  • [7] Weighted projective lines of tubular type and equivariantization
    Chen, Jianmin
    Chen, Xiao-Wu
    JOURNAL OF ALGEBRA, 2017, 470 : 77 - 90
  • [8] Kac's Theorem for weighted projective lines
    Crawley-Boevey, William
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (06) : 1331 - 1345
  • [9] Weighted projective lines and rational surface singularities
    Iyama, Osamu
    Wemyss, Michael
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2020, 3
  • [10] PROJECTIVE CONNECTIONS, DOUBLE FIBRATIONS, AND FORMAL NEIGHBORHOODS OF LINES
    HURTUBISE, JC
    KAMRAN, N
    MATHEMATISCHE ANNALEN, 1992, 292 (03) : 383 - 409