Roles for Nkx3.1 in prostate development and cancer

被引:491
|
作者
Bhatia-Gaur, R
Donjacour, AA
Sciavolino, PJ
Kim, M
Desai, N
Young, P
Norton, CR
Gridley, T
Cardiff, RD
Cunha, GR
Abate-Shen, C [1 ]
Shen, MM
机构
[1] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA
[2] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Neurosci & Cell Biol, Piscataway, NJ 08854 USA
[3] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Pediat, Piscataway, NJ 08854 USA
[4] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA
[5] Jackson Lab, Bar Harbor, ME 04609 USA
[6] Univ Calif Davis, Sch Med, Dept Pathol, Davis, CA 95616 USA
关键词
prostate; bulbourethral gland; organogenesis; hyperplasia/dysplasia; haploinsufficiency; tumor suppressor gene;
D O I
10.1101/gad.13.8.966
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In aging men, the prostate gland becomes hyperproliferative and displays a propensity toward carcinoma. Although this hyperproliferative process has been proposed to represent an inappropriate reactivation of an embryonic differentiation program, the regulatory genes responsible for normal prostate development and function are largely undefined. Here we show that the murine Nkx3.1 homeobox gene is the earliest known marker of prostate epithelium during embryogenesis and is subsequently expressed at all stages of prostate differentiation in vivo as well as in tissue recombinants. A null mutation for Nkx3.1 obtained by targeted gene disruption results in defects in prostate ductal morphogenesis and secretory protein production. Notably, Nku3.1 mutant mice display prostatic epithelial hyperplasia and dysplasia that increases in severity with age. This epithelial hyperplasia and dysplasia also occurs in heterozygous mice, indicating haploinsufficiency for this phenotype. Because human NKX3.1 is known to map to a prostate cancer hot spot, we propose that NKX3.1 is a prostate-specific tumor suppressor gene and that loss of a single allele may predispose to prostate carcinogenesis. The Nkx3.1 mutant mice provide a unique animal model for examining the relationship between normal prostate differentiation and early stages of prostate carcinogenesis.
引用
收藏
页码:966 / 977
页数:12
相关论文
共 50 条
  • [1] Roles of the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis
    Shen, MM
    Abate-Shen, C
    DEVELOPMENTAL DYNAMICS, 2003, 228 (04) : 767 - 778
  • [2] A FUNCTIONAL VARIANT IN NKX3.1 ASSOCIATED WITH PROSTATE CANCER SUSCEPTIBILITY DOWN-REGULATES NKX3.1 EXPRESSION
    Akamatsu, Shusuke
    Takata, Ryo
    Kubo, Michiaki
    Kamatani, Naoyuki
    Fujioka, Tomoaki
    Ogawa, Osamu
    Nakamura, Yusuke
    Nakagawa, Hidewaki
    JOURNAL OF UROLOGY, 2011, 185 (04): : E244 - E245
  • [3] A functional variant in NKX3.1 associated with prostate cancer susceptibility down-regulates NKX3.1 expression
    Akamatsu, Shusuke
    Takata, Ryo
    Ashikawa, Kyota
    Hosono, Naoya
    Kamatani, Naoyuki
    Fujioka, Tomoaki
    Ogawa, Osamu
    Kubo, Michiaki
    Nakamura, Yusuke
    Nakagawa, Hidewaki
    HUMAN MOLECULAR GENETICS, 2010, 19 (21) : 4265 - 4272
  • [4] Biological activity of NKX3.1 in human prostate cancer cells
    Hodgson, MC
    Bentel, J
    MOLECULAR BIOLOGY OF THE CELL, 2002, 13 : 105A - 105A
  • [5] NKX3.1 Localization to Mitochondria Suppresses Prostate Cancer Initiation
    Papachristodoulou, Alexandros
    Rodriguez-Calero, Antonio
    Panja, Sukanya
    Margolskee, Elizabeth
    Virk, Renu K.
    Milner, Teresa A.
    Martina, Luis Pina
    Kim, Jaime Y.
    Di Bernardo, Matteo
    Williams, Alanna B.
    Maliza, Elvis A.
    Caputo, Joseph M.
    Haas, Christopher
    Wang, Vinson
    De Castro, Guarionex Joel
    Wenske, Sven
    Hibshoosh, Hanina
    McKiernan, James M.
    Shen, Michael M.
    Rubin, Mark A.
    Mitrofanova, Antonina
    Dutta, Aditya
    Abate-Shen, Cory
    CANCER DISCOVERY, 2021, 11 (09) : 2316 - 2333
  • [6] Functional Activation of ATM by the Prostate Cancer Suppressor NKX3.1
    Cai Bowen
    Ju, Jeong-Ho
    Lee, Ji-Hoon
    Paull, Tanya T.
    Gelmann, Edward P.
    CELL REPORTS, 2013, 4 (03): : 516 - 529
  • [7] Interaction of NKX3.1 and SELENOP genotype with prostate cancer recurrence
    Donadio, Janaina L. S.
    Liu, Li
    Freeman, Vincent L.
    Ekoue, Dede N.
    Diamond, Alan M.
    Bermano, Giovanna
    PROSTATE, 2019, 79 (05): : 462 - 467
  • [8] Spatiofunctional Dynamics of NKX3.1 to Safeguard the Prostate from Cancer
    Finch, Andrew J.
    Baena, Esther
    CANCER DISCOVERY, 2021, 11 (09) : 2132 - 2134
  • [9] Cooperation of loss of NKX3.1 and inflammation in prostate cancer initiation
    Le Magnen, Clementine
    Virk, Renu K.
    Dutta, Aditya
    Kim, Jaime Yeji
    Panja, Sukanya
    Lopez-Bujanda, Zoila A.
    Califano, Andrea
    Drake, Charles G.
    Mitrofanova, Antonina
    Abate-Shen, Cory
    DISEASE MODELS & MECHANISMS, 2018, 11 (11)
  • [10] Analysis of Nkx3.1 target genes as a mechanism of haploinsufficiency in prostate cancer
    Mogal, Ashish
    Abdulkadir, Sarki A.
    CANCER RESEARCH, 2006, 66 (08)