Integrable harmonic functions on symmetric spaces of rank one

被引:5
|
作者
Ben Natan, Y [1 ]
Weit, Y
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[2] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
关键词
Harmonic functions; mean value property; symmetric spaces of rank one;
D O I
10.1006/jfan.1998.3337
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If f is an element of L-1(d mu) is harmonic in the space G/K, where mu is a radial measure with mu(G/K)= 1, we have, by the mean value property f = f * mu. Conversely, does this mean value property imply that f is harmonic? In this paper we give a new and natural proof of a result obtained by P. Ahern, A. Flores, W. Rudin (J. Funct. Anal. 11 (1993), 380-397) and A. Koranyi (Contemp. Math. 191 (1995), 107-116) and generalize their result by providing sufficient conditions for a finite set of radial measures mu(i) on a symmetric space of rank one for which f * mu(i) = f imply that f is harmonic. (C) 1998 Academic Press.
引用
收藏
页码:141 / 149
页数:9
相关论文
共 50 条