Predicting black spruce fuel characteristics with Airborne Laser Scanning (ALS)

被引:9
|
作者
Cameron, H. A. [1 ]
Schroeder, D. [2 ]
Beverly, J. L. [1 ]
机构
[1] Univ Alberta, Dept Renewable Resources, Edmonton, AB T6G 2H1, Canada
[2] Govt Alberta, Wildfire Management Branch, Alberta Agr & Forestry, Edmonton, AB T6H 3S5, Canada
关键词
remote sensing; fire behaviour; boreal ecosystems; fuel; planning; fuel maps; LiDAR; airborne laser scanning; FOREST STRUCTURE; TREE DETECTION; FIRE BEHAVIOR; LIDAR; PINE; INVENTORIES; DELINEATION; ATTRIBUTES; PARAMETERS; VARIABLES;
D O I
10.1071/WF21004
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Wildfire decision support systems combine fuel maps with other fire environment variables to predict fire behaviour and guide management actions. Until recently, financial and technological constraints have limited provincial fuel maps to relatively coarse spatial resolutions. Airborne Laser Scanning (ALS), a remote sensing technology that uses LiDAR (Light Detection and Ranging), is becoming an increasingly affordable and pragmatic tool for mapping fuels across localised and broad areas. Few studies have used ALS in boreal forest regions to describe structural attributes such as fuel load at a fine resolution (i.e. <100 m(2) cell resolution). We used ALS to predict five forest attributes relevant to fire behaviour in black spruce (Picea mariana) stands in Alberta, Canada: canopy bulk density, canopy fuel load, stem density, canopy height and canopy base height. Least absolute shrinkage and selection operator (lasso) regression models indicated statistically significant relationships between ALS data and the forest metrics of interest (R-2 >= 0.81 for all metrics except canopy base height which had a R-2 value of 0.63). Performance of the regression models was acceptable and consistent with prior studies when applied to test datasets; however, regression models presented in this study mapped stand attributes at a much finer resolution (40 m(2)).
引用
收藏
页码:124 / 135
页数:12
相关论文
共 50 条
  • [1] Comprehensive Airborne Laser Scanning (ALS) Simulation
    Shikhar Dayal
    Salil Goel
    Bharat Lohani
    Namit Mittal
    R. K. Mishra
    Journal of the Indian Society of Remote Sensing, 2021, 49 : 1603 - 1622
  • [2] Comprehensive Airborne Laser Scanning (ALS) Simulation
    Dayal, Shikhar
    Goel, Salil
    Lohani, Bharat
    Mittal, Namit
    Mishra, R. K.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (07) : 1603 - 1622
  • [3] Detecting overmature forests with airborne laser scanning (ALS)
    Fuhr, Marc
    Lalechere, Etienne
    Monnet, Jean-Matthieu
    Berges, Laurent
    REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2022, 8 (05) : 731 - 743
  • [4] Predicting the spatial pattern of trees by airborne laser scanning
    Packalen, Petteri
    Vauhkonen, Jari
    Kallio, Eveliina
    Peuhkurinen, Jussi
    Pitkanen, Juho
    Pippuri, Inka
    Strunk, Jacob
    Maltamo, Matti
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (14) : 5154 - 5165
  • [5] Predicting wood quantity and quality attributes of balsam fir and black spruce using airborne laser scanner data
    Luther, Joan E.
    Skinner, Randy
    Fournier, Richard A.
    van Lier, Olivier R.
    Bowers, Wade W.
    Cote, Jean-Francois
    Hopkinson, Chris
    Moulton, Tim
    FORESTRY, 2014, 87 (02): : 313 - 326
  • [6] Mapping LAI in a Norway spruce forest using airborne laser scanning
    Solberg, Svein
    Brunner, Andreas
    Hanssen, Kjersti Holt
    Lange, Holger
    Naesset, Erik
    Rautiainen, Miina
    Stenberg, Pauline
    REMOTE SENSING OF ENVIRONMENT, 2009, 113 (11) : 2317 - 2327
  • [7] Predicting forest stand characteristics with airborne scanning lidar
    Means, JE
    Acker, SA
    Fitt, BJ
    Renslow, M
    Emerson, L
    Hendrix, CJ
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2000, 66 (11): : 1367 - 1371
  • [8] A Comparison of Multitemporal Airborne Laser Scanning Data and the Fuel Characteristics Classification System for Estimating Fuel Load and Consumption
    McCarley, T. Ryan
    Hudak, Andrew T.
    Restaino, Joseph C.
    Billmire, Michael
    French, Nancy H. F.
    Ottmar, Roger D.
    Hass, Bridget
    Zarzana, Kyle
    Goulden, Tristan
    Volkamer, Rainer
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2022, 127 (05)
  • [9] lidR: An R package for analysis of Airborne Laser Scanning (ALS) data
    Roussel, Jean-Romain
    Auty, David
    Coops, Nicholas C.
    Tompalski, Piotr
    Goodbody, Tristan R. H.
    Meador, Andrew Sanchez
    Bourdon, Jean-Francois
    de Boissieu, Florian
    Achim, Alexis
    REMOTE SENSING OF ENVIRONMENT, 2020, 251
  • [10] Predicting Tree Attributes and Quality Characteristics of Scots Pine Using Airborne Laser Scanning Data
    Maltamo, Matti
    Peuhkurinen, Jussi
    Malinen, Jukka
    Vauhkonen, Jari
    Packalen, Petteri
    Tokola, Timo
    SILVA FENNICA, 2009, 43 (03) : 507 - 521