The existence of solutions to certain quasilinear elliptic equations

被引:0
|
作者
Kuo, Tsang-Hai [1 ]
Chen, Yi-Jung [2 ]
机构
[1] Chang Gung Univ, Ctr Gen Educ, Tao Yuan, Taiwan
[2] Tamkang Univ, Dept Math, Tamsui, Taiwan
关键词
Quasilinear elliptic equation; W(2; p)-estimate; p)(Omega) boolean AND W(0)(1; p)(Omega); solution;
D O I
10.1016/j.na.2010.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Lu = -Sigma(N)(i,j)(=1) a(ij)(x, u)D(ij)u + c(x, u)u. Consider the quasilinear elliptic equation Lu = f (x, u, del u) on a bounded smooth domain Omega in R(N), where c(x, r) = alpha > 0, f (x, r,xi) = o[vertical bar r vertical bar + h(vertical bar r vertical bar)vertical bar xi vertical bar(2)]. It is shown that if the oscillation of a(ij)(x, r) with respect to r is sufficiently small, then there exists a solution u is an element of W(2,p)(Omega) boolean AND W(0)(1,p) (Omega) to the equation Lu = f (x, u,del u). (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1286 / 1289
页数:4
相关论文
共 50 条