Multi-category classifiers and sample width

被引:4
|
作者
Anthony, Martin [1 ]
Ratsaby, Joel [2 ]
机构
[1] London Sch Econ & Polit Sci, Dept Math, Houghton St, London WC2A 2AE, England
[2] Ariel Univ, Elect & Elect Engn Dept, IL-40700 Ariel, Israel
关键词
Multi-category classification; Generalization error; Machine learning; Pattern recognition; UNIFORM-CONVERGENCE;
D O I
10.1016/j.jcss.2016.04.003
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In a recent paper, the authors introduced the notion of sample width for binary classifiers defined on the set of real numbers. It was shown that the performance of such classifiers could be quantified in terms of this sample width. This paper considers how to adapt the idea of sample width so that it can be applied in cases where the classifiers are multi category and are defined on some arbitrary metric space. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1223 / 1231
页数:9
相关论文
共 50 条
  • [1] Rademacher complexity of margin multi-category classifiers
    Guermeur, Yann
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (24): : 17995 - 18008
  • [2] Rademacher complexity of margin multi-category classifiers
    Yann Guermeur
    Neural Computing and Applications, 2020, 32 : 17995 - 18008
  • [3] Rademacher Complexity of Margin Multi-category Classifiers
    Guermeur, Yann
    2017 12TH INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, CLUSTERING AND DATA VISUALIZATION (WSOM), 2017, : 249 - 254
  • [4] VC theory of large margin multi-category classifiers
    Guermeur, Yann
    JOURNAL OF MACHINE LEARNING RESEARCH, 2007, 8 : 2551 - 2594
  • [5] Rademacher complexity and generalization performance of multi-category margin classifiers
    Musayeva, Khadija
    Lauer, Fabien
    Guermeur, Yann
    NEUROCOMPUTING, 2019, 342 : 6 - 15
  • [6] Performance advantage of combined classifiers in multi-category cases: An analysis
    Song, X
    Pavel, M
    NEURAL INFORMATION PROCESSING, 2004, 3316 : 750 - 757
  • [7] Metric Entropy and Rademacher Complexity of Margin Multi-category Classifiers
    Musayeva, Khadija
    Lauer, Fabien
    Guermeur, Yann
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 767 - 767
  • [8] Multi-category classification by soft-max combination of binary classifiers
    Duan, KB
    Keerthi, SS
    Chu, W
    Shevade, SK
    Poo, AN
    MULTIPLE CLASSIFIER SYSTEMS, PROCEEDING, 2003, 2709 : 125 - 134
  • [9] Multi-category news classification using Support Vector Machine based classifiers
    Saigal, Pooja
    Khanna, Vaibhav
    SN APPLIED SCIENCES, 2020, 2 (03):
  • [10] Multi-category news classification using Support Vector Machine based classifiers
    Pooja Saigal
    Vaibhav Khanna
    SN Applied Sciences, 2020, 2