Rings of weak dimension one and syzygetic ideals

被引:6
|
作者
Planas-Vilanova, F
机构
关键词
ideal of linear type; syzygetic ideal; weak dimension; homology of commutative rings;
D O I
10.1090/S0002-9939-96-03416-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that rings of weak dimension one are the rings with all (three-generated) ideals syzygetic. This leads to a characterization of these rings in terms of the Andre-Quillen homology.
引用
收藏
页码:3015 / 3017
页数:3
相关论文
共 50 条
  • [1] Noetherian rings of low global dimension and syzygetic prime ideals
    Planas-Vilanova, Francesc
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (02)
  • [2] Regular local rings of dimension four and Gorenstein syzygetic prime ideals
    Planas-Vilanova, Francesc
    JOURNAL OF ALGEBRA, 2022, 601 : 105 - 114
  • [3] PROJECTIVE IDEALS IN RINGS OF DIMENSION ONE
    CARRIG, JE
    VASCONCELOS, WV
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 71 (02) : 169 - 173
  • [4] Rigid Ideals in Gorenstein Rings of Dimension One
    Huneke, Craig
    Iyengar, Srikanth B.
    Wiegand, Roger
    ACTA MATHEMATICA VIETNAMICA, 2019, 44 (01) : 31 - 49
  • [5] Rigid Ideals in Gorenstein Rings of Dimension One
    Craig Huneke
    Srikanth B. Iyengar
    Roger Wiegand
    Acta Mathematica Vietnamica, 2019, 44 : 31 - 49
  • [6] On Rings of Weak Global Dimension at Most One
    Tuganbaev, Askar
    MATHEMATICS, 2021, 9 (21)
  • [7] Smashing localizations of rings of weak global dimension at most one
    Bazzoni, Silvana
    Stovicek, Jan
    ADVANCES IN MATHEMATICS, 2017, 305 : 351 - 401
  • [8] Sally modules of canonical ideals in dimension one and 2-AGL rings
    Tran Do Minh Chau
    Goto, Shiro
    Kumashiro, Shinya
    Matsuoka, Naoyuki
    JOURNAL OF ALGEBRA, 2019, 521 : 299 - 330
  • [9] DEFINABLE COAISLES OVER RINGS OF WEAK GLOBAL DIMENSION AT MOST ONE
    Bazzoni, Silvana
    Hrbek, Michal
    PUBLICACIONS MATEMATIQUES, 2021, 65 (01) : 165 - 241
  • [10] SYZYGETIC IDEALS, REGULAR SEQUENCES, AND A QUESTION OF SIMIS
    BARJA, J
    RODICIO, AG
    JOURNAL OF ALGEBRA, 1989, 121 (02) : 310 - 314