Evaluating Extreme Hierarchical Multi-label Classification

被引:0
|
作者
Amigo, Enrique [1 ]
Delgado, Agustin D. [1 ]
机构
[1] UNED, Madrid, Spain
关键词
SIMILARITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Several natural language processing (NLP) tasks are defined as a classification problem in its most complex form: Multi-label Hierarchical Extreme classification, in which items may be associated with multiple classes from a set of thousands of possible classes organized in a hierarchy and with a highly unbalanced distribution both in terms of class frequency and the number of labels per item. We analyze the state of the art of evaluation metrics based on a set of formal properties and we define an information theoretic based metric inspired by the Information Contrast Model (ICM). Experiments on synthetic data and a case study on real data show the suitability of the ICM for such scenarios.
引用
收藏
页码:5809 / 5819
页数:11
相关论文
共 50 条
  • [1] A no-regret generalization of hierarchical softmax to extreme multi-label classification
    Wydmuch, Marek
    Jasinska, Kalina
    Kuznetsov, Mikhail
    Busa-Fekete, Robert
    Dembczynski, Krzysztof
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [2] Deep neural network for hierarchical extreme multi-label text classification
    Gargiulo, Francesco
    Silvestri, Stefano
    Ciampi, Mario
    De Pietro, Giuseppe
    [J]. APPLIED SOFT COMPUTING, 2019, 79 : 125 - 138
  • [3] ReliefF for Hierarchical Multi-label Classification
    Slavkov, Ivica
    Karcheska, Jana
    Kocev, Dragi
    Kalajdziski, Slobodan
    Dzeroski, Saso
    [J]. NEW FRONTIERS IN MINING COMPLEX PATTERNS, NFMCP 2013, 2014, 8399 : 148 - 161
  • [4] Hierarchical Multi-Label Classification Networks
    Wehrmann, Jonatas
    Cerri, Ricardo
    Barros, Rodrigo C.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [5] Extreme Multi-label Classification with Hierarchical Multi-task for Product Attribute Identification
    Zhang, Jun
    Cai, Menqian
    Zhao, Chenyu
    Zhang, Xiaowei
    Zhang, Zhiqian
    Chen, Haiheng
    Xu, Sulong
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2022, PT III, 2022, 13282 : 249 - 260
  • [6] The importance of the label hierarchy in hierarchical multi-label classification
    Jurica Levatić
    Dragi Kocev
    Sašo Džeroski
    [J]. Journal of Intelligent Information Systems, 2015, 45 : 247 - 271
  • [7] Label Correction Strategy on Hierarchical Multi-Label Classification
    Ananpiriyakul, Thanawut
    Poomsirivilai, Piyapan
    Vateekul, Peerapon
    [J]. MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, MLDM 2014, 2014, 8556 : 213 - 227
  • [8] The importance of the label hierarchy in hierarchical multi-label classification
    Levatic, Jurica
    Kocev, Dragi
    Dzeroski, Saso
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2015, 45 (02) : 247 - 271
  • [9] Reweighting Forest for Extreme Multi-label Classification
    Lin, Zhun-Zheng
    Dai, Bi-Ru
    [J]. BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY, DAWAK 2017, 2017, 10440 : 286 - 299
  • [10] Extreme Learning Machine for Multi-Label Classification
    Sun, Xia
    Xu, Jingting
    Jiang, Changmeng
    Feng, Jun
    Chen, Su-Shing
    He, Feijuan
    [J]. ENTROPY, 2016, 18 (06)