Optical Coherence Tomography Image Segmentation for Cornea Surgery using Deep Neural Networks

被引:0
|
作者
Heo, Young Jin [1 ]
Park, Ikjong [1 ]
Kim, Ki Hean [1 ]
Kim, Myoung Joon [2 ]
Chung, Wan Kyun [1 ]
机构
[1] POSTECH, Dept Mech Engn, Pohang 790784, South Korea
[2] Univ Ulsan, Coll Med, Dept Ophthalmol, Asan Med Ctr, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
AUTOMATIC SEGMENTATION; LAYER BOUNDARIES; KERATOPLASTY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes use of deep neural networks for semantic segmentation of optical coherence tomography (OCT) images to accurately predict segmentation masks from noisy and occluded OCT images. The OCT images and semantic masks are acquired and commercial surgical tools, from an exvivo porcine eye. Simple post-processing can compute needle tip position and insertion depth from the predicted semantic masks. The segmentation accuracy, needle tip position error, and insertion depth error obtained from the FCN-8s, dilated convolution, and U-Net were compared. U-Net achieved the highest accuracy in the presence of occlusion and object overlap (81.5% mean IoU; 30.0-mu m tip-position error). The results show that the OCT image segmentation can be applied to the development of a surgical robot for corneal suturing.
引用
收藏
页码:14 / 18
页数:5
相关论文
共 50 条
  • [1] Segmentation of mouse skin layers in optical coherence tomography image data using deep convolutional neural networks
    Kepp, Timo
    Droigk, Christine
    Casper, Malte
    Evers, Michael
    Huettmann, Gereon
    Salma, Nunciada
    Manstein, Dieter
    Heinrich, Mattias P.
    Handels, Heinz
    [J]. BIOMEDICAL OPTICS EXPRESS, 2019, 10 (07): : 3484 - 3496
  • [2] Segmentation of Preretinal Space in Optical Coherence Tomography Images Using Deep Neural Networks
    Stankiewicz, Agnieszka
    Marciniak, Tomasz
    Dabrowski, Adam
    Stopa, Marcin
    Marciniak, Elzbieta
    Obara, Boguslaw
    [J]. SENSORS, 2021, 21 (22)
  • [3] Classification of Optical Coherence Tomography Images Using Deep Neural Networks
    Kotoku, J.
    Tsuji, T.
    Hirose, Y.
    Fujimori, K.
    Hirose, T.
    Oyama, A.
    Saikawa, Y.
    Mimura, T.
    Shiraishi, K.
    Kobayashi, T.
    Mizota, A.
    [J]. MEDICAL PHYSICS, 2020, 47 (06) : E391 - E391
  • [4] Optical coherence tomography in cornea and refractive surgery
    Hurmeric, Volkan
    Yoo, Sonia H.
    Mutlu, Fatih Mehmet
    [J]. EXPERT REVIEW OF OPHTHALMOLOGY, 2012, 7 (03) : 241 - 250
  • [5] OPTICAL COHERENCE TOMOGRAPHY IMAGE SEGMENTATION
    Duan, Jinming
    Tench, Christopher
    Gottlob, Irene
    Proudlock, Frank
    Bai, Li
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4278 - 4282
  • [6] Comparing the assessment of image quality of Optical Coherence Tomography data with Deep Neural Networks and Image processing
    Patel, Krunalkumar Ramanbhai
    Ranipa, Keyur
    Shivaram, Namritha
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [7] Segmentation of inner microlayers of abnormal cornea in Optical Coherence Tomography images using graph segmentation
    Elsawy, Amr
    Eleiwa, Taher Kamel
    Raheem, Mariam
    Gregori, Giovanni
    Abdel-Mottaleb, Mohamed
    Abou Shousha, Mohamed
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (11)
  • [8] Examination of the cornea using optical coherence tomography
    Wirbelauer, C
    Scholz, C
    Hoerauf, H
    Bastian, GO
    Engelhardt, R
    Birngruber, R
    Laqua, H
    [J]. OPHTHALMOLOGE, 2001, 98 (02): : 151 - 156
  • [9] Medical Image Segmentation Using Deep Neural Networks
    Aydin, Musa
    [J]. 29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [10] Ordinal Image Segmentation using Deep Neural Networks
    Fernandes, Kelwin
    Cardoso, Jaime S.
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,