HOW MANY EIGENVALUES OF A RANDOM SYMMETRIC TENSOR ARE REAL?

被引:10
|
作者
Breiding, Paul [1 ]
机构
[1] Tech Univ Berlin, Str 17 Juni 136, D-10623 Berlin, Germany
关键词
NUMBER;
D O I
10.1090/tran/7910
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article answers a question posed by Draisma and Horobet, who asked for a closed formula for the expected number of real eigenvalues of a random real symmetric tensor drawn from the Gaussian distribution relative to the Bombieri norm. This expected value is equal to the expected number of real critical points on the unit sphere of a Kostlan polynomial. We also derive an exact formula for the expected absolute value of the determinant of a matrix from the Gaussian Orthogonal Ensemble.
引用
收藏
页码:7857 / 7887
页数:31
相关论文
共 50 条
  • [1] How many eigenvalues of a Gaussian random matrix are positive?
    Majumdar, Satya N.
    Nadal, Celine
    Scardicchio, Antonello
    Vivo, Pierpaolo
    PHYSICAL REVIEW E, 2011, 83 (04):
  • [2] The product of the eigenvalues of a symmetric tensor
    Sodomaco, Luca
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 554 : 224 - 248
  • [3] Tensor eigenvalues and entanglement of symmetric states
    Bohnet-Waldraff, F.
    Braun, D.
    Giraud, O.
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [4] How Many Eigenvalues of a Product of Truncated Orthogonal Matrices are Real?
    Forrester, P. J.
    Ipsen, J. R.
    Kumar, S.
    EXPERIMENTAL MATHEMATICS, 2020, 29 (03) : 276 - 290
  • [5] HOW MANY ZEROS OF A RANDOM POLYNOMIAL ARE REAL
    EDELMAN, A
    KOSTLAN, E
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 32 (01) : 1 - 37
  • [6] Eigenvalues of a real supersymmetric tensor
    Qi, LQ
    JOURNAL OF SYMBOLIC COMPUTATION, 2005, 40 (06) : 1302 - 1324
  • [7] Eigenvalues of Real Symmetric Matrices
    Geck, Meinolf
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (05): : 482 - 483
  • [8] The edge of random tensor eigenvalues with deviation
    Delporte, Nicolas
    Sasakura, Naoki
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (01):
  • [9] PRESCRIBING THE SYMMETRIC FUNCTION OF THE EIGENVALUES OF THE SCHOUTEN TENSOR
    He, Yan
    Sheng, Weimin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (03) : 1127 - 1136
  • [10] Prescribing symmetric functions of the eigenvalues of the Ricci tensor
    Gursky, Matthew J.
    Viaclovsky, Jeff A.
    ANNALS OF MATHEMATICS, 2007, 166 (02) : 475 - 531