共 9 条
Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols
被引:47
|作者:
Ferraro, A. J.
[1
,2
]
Charlton-Perez, A. J.
[1
]
Highwood, E. J.
[1
]
机构:
[1] Univ Reading, Dept Meteorol, Reading, Berks, England
[2] Univ Exeter, Coll Engn Math & Phys Sci, Exeter, Devon, England
基金:
英国自然环境研究理事会;
关键词:
stratosphere;
geoengineering;
aerosol;
climate change;
solar radiation management;
SOLAR-RADIATION MANAGEMENT;
BREWER-DOBSON CIRCULATION;
CLIMATE-CHANGE;
HYDROLOGICAL CYCLE;
OZONE DEPLETION;
SURFACE CLIMATE;
CMIP5;
MODELS;
VARIABILITY;
IMPACT;
SIMULATIONS;
D O I:
10.1002/2014JD022734
中图分类号:
P4 [大气科学(气象学)];
学科分类号:
0706 ;
070601 ;
摘要:
The impact on the dynamics of the stratosphere of three approaches to geoengineering by solar radiation management is investigated using idealized simulations of a global climate model. The approaches are geoengineering with sulfate aerosols, titania aerosols, and reduction in total solar irradiance (representing mirrors placed in space). If it were possible to use stratospheric aerosols to counterbalance the surface warming produced by a quadrupling of atmospheric carbon dioxide concentrations, tropical lower stratospheric radiative heating would drive a thermal wind response which would intensify the stratospheric polar vortices. In the Northern Hemisphere this intensification results in strong dynamical cooling of the polar stratosphere. Northern Hemisphere stratospheric sudden warming events become rare (one and two in 65 years for sulfate and titania, respectively). The intensification of the polar vortices results in a poleward shift of the tropospheric midlatitude jets in winter. The aerosol radiative heating enhances the tropical upwelling in the lower stratosphere, influencing the strength of the Brewer-Dobson circulation. In contrast, solar dimming does not produce heating of the tropical lower stratosphere, and so there is little intensification of the polar vortex and no enhanced tropical upwelling. The dynamical response to titania aerosol is qualitatively similar to the response to sulfate.
引用
收藏
页码:414 / 429
页数:16
相关论文