Efficient Generation of Knock-In Zebrafish Models for Inherited Disorders Using CRISPR-Cas9 Ribonucleoprotein Complexes

被引:12
|
作者
de Vrieze, Erik [1 ,2 ]
de Bruijn, Suzanne E. [2 ,3 ]
Reurink, Janine [2 ,3 ]
Broekman, Sanne [1 ,2 ]
van de Riet, Vince [1 ,2 ]
Aben, Marco [2 ,3 ]
Kremer, Hannie [1 ,2 ,3 ]
van Wijk, Erwin [1 ,2 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol, NL-6525 GA Nijmegen, Netherlands
[2] Donders Inst Brain Cognit & Behav, NL-6500 GL Nijmegen, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6525 GA Nijmegen, Netherlands
关键词
zebrafish; CRISPR-Cas9; knock-in; homology-directed repair; disease models; GENOME; MUTAGENESIS; PRECISE;
D O I
10.3390/ijms22179429
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR-Cas9-based genome-editing is a highly efficient and cost-effective method to generate zebrafish loss-of-function alleles. However, introducing patient-specific variants into the zebrafish genome with CRISPR-Cas9 remains challenging. Targeting options can be limited by the predetermined genetic context, and the efficiency of the homology-directed DNA repair pathway is relatively low. Here, we illustrate our efficient approach to develop knock-in zebrafish models using two previously variants associated with hereditary sensory deficits. We employ sgRNA-Cas9 ribonucleoprotein (RNP) complexes that are micro-injected into the first cell of fertilized zebrafish eggs together with an asymmetric, single-stranded DNA template containing the variant of interest. The introduction of knock-in events was confirmed by massive parallel sequencing of genomic DNA extracted from a pool of injected embryos. Simultaneous morpholino-induced blocking of a key component of the non-homologous end joining DNA repair pathway, Ku70, improved the knock-in efficiency for one of the targets. Our use of RNP complexes provides an improved knock-in efficiency as compared to previously published studies. Correct knock-in events were identified in 3-8% of alleles, and 30-45% of injected animals had the target variant in their germline. The detailed technical and procedural insights described here provide a valuable framework for the efficient development of knock-in zebrafish models.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing
    Koch, Birgit
    Nijmeijer, Bianca
    Kueblbeck, Moritz
    Cai, Yin
    Walther, Nike
    Ellenberg, Jan
    NATURE PROTOCOLS, 2018, 13 (06) : 1465 - 1487
  • [2] Rapid and efficient cataract gene evaluation in F0 zebrafish using CRISPR-Cas9 ribonucleoprotein complexes
    Zhao, Duran
    Jones, Johanna L.
    Gasperini, Robert J.
    Charlesworth, Jac C.
    Liu, Guei-Sheung
    Burdon, Kathryn P.
    METHODS, 2021, 194 : 37 - 47
  • [3] Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9
    Prykhozhij, Sergey V.
    Fuller, Charlotte
    Steele, Shelby L.
    Veinotte, Chansey J.
    Razaghi, Babak
    Robitaille, Johane M.
    McMaster, Christopher R.
    Shlien, Adam
    Malkin, David
    Berman, Jason N.
    NUCLEIC ACIDS RESEARCH, 2018, 46 (17) : 9252 - 9252
  • [4] Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing
    Artegiani, Benedetta
    Hendriks, Delilah
    Beumer, Joep
    Kok, Rutger
    Zheng, Xuan
    Joore, Indi
    Chuva de Sousa Lopes, Susana
    van Zon, Jeroen
    Tans, Sander
    Clevers, Hans
    NATURE CELL BIOLOGY, 2020, 22 (03) : 321 - +
  • [5] Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes
    Burger, Alexa
    Lindsay, Helen
    Felker, Anastasia
    Hess, Christopher
    Anders, Carolin
    Chiavacci, Elena
    Zaugg, Jonas
    Weber, Lukas M.
    Catena, Raul
    Jinek, Martin
    Robinson, Mark D.
    Mosimann, Christian
    DEVELOPMENT, 2016, 143 (11): : 2025 - 2037
  • [6] Generation of Dopamine Transporter (DAT)-mCherry Knock-in Rats by CRISPR-Cas9 Genome Editing
    Matsumoto, Nobuyoshi
    Miyano, Miyuki
    Abe, Takaya
    Kashima, Tetsuhiko
    Kato-Ishikura, Eriko
    Inoue, Ken-ichi
    Liu, Jiayan
    Kiyonari, Hiroshi
    Takeuchi, Haruki
    Ikegaya, Yuji
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2024, 47 (02) : 394 - 398
  • [7] One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes
    Owen, Joseph R.
    Hennig, Sadie L.
    McNabb, Bret R.
    Mansour, Tamer A.
    Smith, Justin M.
    Lin, Jason C.
    Young, Amy E.
    Trott, Josephine F.
    Murray, James D.
    Delany, Mary E.
    Ross, Pablo J.
    Van Eenennaam, Alison L.
    BMC GENOMICS, 2021, 22 (01)
  • [8] Generation of an Akaluc knock-in human embryonic stem cell reporter line using CRISPR-Cas9 technology
    Zhou, Min
    Xing, Qi
    Zhang, Di
    Zhang, Cong
    Zhang, Yanqi
    Zhang, Jingyuan
    Shan, Yongli
    STEM CELL RESEARCH, 2021, 56
  • [9] One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes
    Joseph R. Owen
    Sadie L. Hennig
    Bret R. McNabb
    Tamer A. Mansour
    Justin M. Smith
    Jason C. Lin
    Amy E. Young
    Josephine F. Trott
    James D. Murray
    Mary E. Delany
    Pablo J. Ross
    Alison L. Van Eenennaam
    BMC Genomics, 22
  • [10] Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish
    Albadri, Shahad
    Del Bene, Filippo
    Revenu, Celine
    METHODS, 2017, 121 : 77 - 85