Redox regulation of cAMP-dependent protein kinase signaling - Kinase versus phosphatase inactivation

被引:56
|
作者
Humphries, Kenneth M.
Pennypacker, Juniper K.
Taylor, Susan S.
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, Howard Hughes Med Inst, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
关键词
D O I
10.1074/jbc.M702582200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many components of cellular signaling pathways are sensitive to regulation by oxidation and reduction. Previously, we described the inactivation of cAMP-dependent protein kinase (PKA) by direct oxidation of a reactive cysteine in the activation loop of the kinase. In the present study, we demonstrate that in HeLa cells PKA activity follows a biphasic response to thiol oxidation. Under mild oxidizing conditions, or short exposure to oxidants, forskolin-stimulated PKA activity is enhanced. This enhancement was blocked by sulfhydryl reducing agents, demonstrating a reversible mode of activation. In contrast, forskolin-stimulated PKA activity is inhibited by more severe oxidizing conditions. Mild oxidation enhanced PKA activity stimulated by forskolin, isoproterenol, or the cell-permeable analog, 8-bromo-cAMP. When cells were lysed in the presence of serine/threonine phosphatase inhibitor, NaF, the PKA-enhancing effect of oxidation was blunted. These results suggest oxidation of a PKA-counteracting phosphatase may be inhibited, thus enhancing the apparent kinase activity. Using an in vivo PKA activity reporter, we demonstrated that mild oxidation does indeed prolong the PKA signal induced by isoproterenol by inhibiting counteracting phosphatase activity. The results of this study demonstrate in live cells a unique synergistic mechanism whereby the PKA signaling pathway is enhanced in an apparent biphasic manner.
引用
收藏
页码:22072 / 22079
页数:8
相关论文
共 50 条
  • [1] Redox regulation of cAMP-dependent protein kinase (PKA)
    Humphries, KM
    Taylor, SS
    FASEB JOURNAL, 2005, 19 (05): : A1380 - A1380
  • [2] REGULATION OF HEART CAMP-DEPENDENT PROTEIN KINASE
    KEELY, SL
    CORBIN, JD
    PARK, CR
    FEDERATION PROCEEDINGS, 1973, 32 (03) : 643 - &
  • [3] Camp-dependent protein kinase
    Kjærland, E
    Viste, K
    Kleppe, R
    Doskeland, SO
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2006, 28 : S4 - S5
  • [4] Proteolytic Regulation of the Mitochondrial cAMP-Dependent Protein Kinase
    Shell, Jennifer R.
    Lawrence, David S.
    BIOCHEMISTRY, 2012, 51 (11) : 2258 - 2264
  • [5] Csk phosphorylation and inactivation in vitro by the cAMP-dependent protein kinase
    Sun, GQ
    Ke, S
    Budde, RJA
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1997, 343 (02) : 194 - 200
  • [6] CONTROL OF PHOSPHORYLASE PHOSPHATASE BY CAMP-DEPENDENT PROTEIN-KINASE
    GERGELY, P
    BOT, G
    FEBS LETTERS, 1977, 82 (02): : 269 - 272
  • [7] Regulation of cAMP-dependent protein kinase activity by glutathionylation
    Humphries, KM
    Juliano, C
    Taylor, SS
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (45) : 43505 - 43511
  • [8] TYROSINE KINASE CATALYZED PHOSPHORYLATION AND INACTIVATION OF THE INHIBITOR PROTEIN OF THE CAMP-DEPENDENT PROTEIN-KINASE
    VANPATTEN, SM
    HEISERMANN, GJ
    CHENG, HC
    WALSH, DA
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1987, 262 (07) : 3398 - 3403
  • [9] Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase
    Saxena, M
    Williams, S
    Taskén, K
    Mustelin, T
    NATURE CELL BIOLOGY, 1999, 1 (05) : 305 - 311
  • [10] Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase
    Manju Saxena
    Scott Williams
    Kjetil Taskén
    Tomas Mustelin
    Nature Cell Biology, 1999, 1 : 305 - 310