The survival probability of a branching random walk in presence of an absorbing wall

被引:35
|
作者
Derrida, B. [1 ]
Simon, D. [1 ]
机构
[1] Ecole Normale Super, Lab Phys Stat, F-75231 Paris 05, France
关键词
D O I
10.1209/0295-5075/78/60006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A branching random walk in presence of an absorbing wall moving at a constant velocity upsilon undergoes a phase transition as upsilon varies. The problem can be analyzed using the properties of the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation. We find that the survival probability of the branching random walk vanishes at a critical velocity upsilon(c) of the wall with an essential singularity and we characterize the divergences of the relaxation times for upsilon < upsilon(c) and upsilon > upsilon(c). At upsilon = upsilon(c) the survival probability decays like a stretched exponential. Using the F-KPP equation: one can also calculate the distribution of the population size at time t conditioned by the survival of one individual at a later time T > t. Our numerical results indicate that the size of the population diverges like the exponential of (upsilon(c) - upsilon)(-1/2) in the quasi-stationary regime below upsilon(c). Moreover for upsilon > upsilon(c), our data indicate that there is no quasi-stationary regime. Copyright (C) EPLA, 2007
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quasi-Stationary Regime of a Branching Random Walk in Presence of an Absorbing Wall
    Damien Simon
    Bernard Derrida
    [J]. Journal of Statistical Physics, 2008, 131 : 203 - 233
  • [2] Quasi-stationary regime of a branching random walk in presence of an absorbing wall
    Simon, Damien
    Derrida, Bernard
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (02) : 203 - 233
  • [3] A branching random walk in the presence of a hard wall
    Roy, Rishideep
    [J]. JOURNAL OF APPLIED PROBABILITY, 2024, 61 (01) : 1 - 17
  • [4] Asymptotics for the survival probability in a killed branching random walk
    Gantert, Nina
    Hu, Yueyun
    Shi, Zhan
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (01): : 111 - 129
  • [5] Asymptotic behavior of survival probability for a branching random walk with a barrier
    Lv, You
    [J]. AIMS MATHEMATICS, 2023, 8 (02): : 5049 - 5059
  • [6] Survival probability of the branching random walk killed below a linear boundary
    Berard, Jean
    Gouere, Jean-Baptiste
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 396 - 418
  • [7] RANDOM WALK IN THE PRESENCE OF ABSORBING BARRIERS
    KAC, M
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1945, 16 (01): : 62 - 67
  • [9] Critical survival barrier for branching random walk
    Jingning Liu
    Mei Zhang
    [J]. Frontiers of Mathematics in China, 2019, 14 : 1259 - 1280
  • [10] Critical survival barrier for branching random walk
    Liu, Jingning
    Zhang, Mei
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (06) : 1259 - 1280