Realtime Global Attention Network for Semantic Segmentation

被引:1
|
作者
Mo, Xi [1 ]
Chen, Xiangyu [1 ]
机构
[1] Univ Kansas, Sch Engn, Lawrence, KS 66049 USA
关键词
Object detection; segmentation and categorization; deep learning for visual perception; perception for grasping and manipulation;
D O I
10.1109/LRA.2022.3140443
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this letter, we proposed an end-to-end realtime global attention neural network (RGANet) for the challenging task of semantic segmentation. Different from the encoding strategy deployed by self-attention paradigms,the proposed global attention module encodes global attention via depthwise convolution and affine transformations. The integration of these global attention modules into a hierarchical architecture maintains high inferential performance. In addition, an improved evaluation metric, namely MGRID, is proposed to alleviate the negative effect of non-convex. widely scattered ground-truth areas. Results from extensive experiments on state-of-the-art architectures for suction region segmentation manifest the leading performance of proposed approaches for robotic monocular visual perception.
引用
收藏
页码:1574 / 1580
页数:7
相关论文
共 50 条
  • [1] Global Attention Pyramid Network for Semantic Segmentation
    Zhang, Na
    Li, Jun
    Li, Yongrui
    Du, Yang
    [J]. PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 8728 - 8732
  • [2] Global-Local Attention Network for Semantic Segmentation in Aerial Images
    Li, Minglong
    Shan, Lianlei
    Li, Xiaobin
    Bai, Yang
    Zhou, Dengji
    Wang, Weiqiang
    Lv, Ke
    Luo, Bin
    Chen, Si-Bao
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5704 - 5711
  • [3] Attention Guided Global Enhancement and Local Refinement Network for Semantic Segmentation
    Li, Jiangyun
    Zha, Sen
    Chen, Chen
    Ding, Meng
    Zhang, Tianxiang
    Yu, Hong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3211 - 3223
  • [4] Bilateral attention network for semantic segmentation
    Wang, Dongli
    Li, Nanjun
    Zhou, Yan
    Mu, Jinzhen
    [J]. IET IMAGE PROCESSING, 2021, 15 (08) : 1607 - 1616
  • [5] CROSS ATTENTION NETWORK FOR SEMANTIC SEGMENTATION
    Liu, Mengyu
    Yin, Hujun
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2434 - 2438
  • [6] Embedded Attention Network for Semantic Segmentation
    Lv, Qingxuan
    Feng, Mingzhe
    Sun, Xin
    Dong, Junyu
    Chen, Changrui
    Zhang, Yu
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (01): : 326 - 333
  • [7] Dynamic attention network for semantic segmentation
    Wu, Fei
    Chen, Feng
    Jing, Xiao-Yuan
    Hu, Chang-Hui
    Ge, Qi
    Ji, Yimu
    [J]. NEUROCOMPUTING, 2020, 384 (384) : 182 - 191
  • [8] Semantic segmentation based on double pyramid network with improved global attention mechanism
    Xianfeng Ou
    Hanpu Wang
    Guoyun Zhang
    Wujing Li
    Shuixiang Yu
    [J]. Applied Intelligence, 2023, 53 : 18898 - 18909
  • [9] Semantic segmentation based on double pyramid network with improved global attention mechanism
    Ou, Xianfeng
    Wang, Hanpu
    Zhang, Guoyun
    Li, Wujing
    Yu, Shuixiang
    [J]. APPLIED INTELLIGENCE, 2023, 53 (15) : 18898 - 18909
  • [10] GA-NET: Global Attention Network for Point Cloud Semantic Segmentation
    Deng, Shuang
    Dong, Qiulei
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1300 - 1304