Geometric density for invariant random subgroups of groups acting on CAT(0) spaces

被引:4
|
作者
Duchesne, Bruno [1 ]
Glasner, Yair [2 ]
Lazarovich, Nir [3 ]
Lecureux, Jean [4 ]
机构
[1] Univ Lorraine, Inst Elie Cartan Lorraine, F-54506 Vandoeuvre Les Nancy, France
[2] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[3] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[4] Univ Paris 11, Dept Math, Fac Sci Orsay, F-91405 Orsay, France
基金
以色列科学基金会;
关键词
Invariant random subgroups; CAT(0) spaces; Geometric density; ISOMETRY GROUPS;
D O I
10.1007/s10711-014-0038-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that an IRS of a group with a geometrically dense action on a CAT(0) space also acts geometrically densely; assuming the space is either of finite telescopic dimension or locally compact with finite dimensional Tits boundary. This can be thought of as a Borel density theorem for IRSs.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 50 条