DISCRIMINANT SPATIAL-SPECTRAL HYPERGRAPH LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION

被引:0
|
作者
Luo, Fulin [1 ,4 ]
Zhang, Liangpei [1 ]
Du, Bo [2 ]
Zhang, Lefei [2 ]
Dong, Yanni [3 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China
[2] Wuhan Univ, Sch Comp, Wuhan 430072, Peoples R China
[3] China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R China
[4] Nanjing Univ Sci & Technol, Minist Educ, Key Lab Intelligent Percept & Syst High Dimens In, Nanjing 210094, Jiangsu, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Hyperspectral image; feature learning; hypergraph learning; spatial-spectral information; DIMENSIONALITY REDUCTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral image (HSI) contains a large number of spatial spectral information, which will make the traditional classification methods face an enormous challenge to discriminate the types of land-cover. Feature learning is very effective to improve the classification performances. However, the current feature learning approaches are most based on a simple intrinsic structure. To represent the complex intrinsic spatial spectral of HSI, a novel feature learning algorithm, termed discriminant spatial-spectral hypergraph learning (DSSHL), has been proposed on the basis of spatial-spectral information and hypergraph learning. DSSHL constructs an intraclass spatial-spectral hypergraph and an interclass spatial-spectral hypergraph to represent the intrinsic properties of HSI. Then, a feature learning model is designed to compact the intraclass information and separate the interclass information. DSSHL can effectively reveal the complex spatial-spectral structures of HSI for land-cover classification. Experimental results on the Salinas HSI data set shows that DSSHL can achieve better classification accuracies in comparison with some stateof-the-art methods.
引用
收藏
页码:8480 / 8483
页数:4
相关论文
共 50 条
  • [1] Feature Learning Using Spatial-Spectral Hypergraph Discriminant Analysis for Hyperspectral Image
    Luo, Fulin
    Du, Bo
    Zhang, Liangpei
    Zhang, Lefei
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (07) : 2406 - 2419
  • [2] Using spatial-spectral regularized hypergraph embedding for hyperspectral image classification
    Huang, Hong
    Chen, Meili
    Wang, Lihua
    Li, Zhengying
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (06): : 676 - 687
  • [3] SPATIAL-SPECTRAL CONTRASTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Guan, Peiyan
    Lam, Edmund Y.
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1372 - 1375
  • [4] Learning Spatial-Spectral Features for Hyperspectral Image Classification
    Shu, Lei
    McIsaac, Kenneth
    Osinski, Gordon R.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5138 - 5147
  • [5] Adaptive Spatial-Spectral Feature Learning for Hyperspectral Image Classification
    Li, Simin
    Zhu, Xueyu
    Liu, Yang
    Bao, Jie
    [J]. IEEE ACCESS, 2019, 7 : 61534 - 61547
  • [6] SPATIAL-SPECTRAL MULTIPLE KERNEL LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Gu, Yanfeng
    Feng, Kai
    Wang, Hong
    [J]. 2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [7] Multiview Spatial-Spectral Active Learning for Hyperspectral Image Classification
    Xu, Meng
    Zhao, Qingqing
    Jia, Sen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Spatial-Spectral ConvNeXt for Hyperspectral Image Classification
    Zhu, Yimin
    Yuan, Kexin
    Zhong, Wenlong
    Xu, Linlin
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 (5453-5463) : 5453 - 5463
  • [9] Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Xin
    Chen, Yushi
    Lin, Zhouhan
    [J]. REMOTE SENSING, 2021, 13 (03) : 1 - 22
  • [10] Spatial-Spectral BERT for Hyperspectral Image Classification
    Ashraf, Mahmood
    Zhou, Xichuan
    Vivone, Gemine
    Chen, Lihui
    Chen, Rong
    Majdard, Reza Seifi
    [J]. REMOTE SENSING, 2024, 16 (03)