Prediction of Treatment Response in Triple Negative Breast Cancer From Whole Slide Images

被引:1
|
作者
Naylor, Peter [1 ,2 ,3 ,11 ]
Lazard, Tristan [1 ,2 ,3 ]
Bataillon, Guillaume [4 ,12 ]
Lae, Marick [4 ,5 ]
Vincent-Salomon, Anne [4 ,6 ]
Hamy, Anne-Sophie [7 ,8 ,9 ]
Reyal, Fabien [7 ,8 ,10 ]
Walter, Thomas [1 ,2 ,3 ]
机构
[1] PSL Univ, Ctr Comp Biol CBIO, MINES ParisTech, Paris, France
[2] Inst Curie, Paris, France
[3] INSERM U900, Paris, France
[4] PSL Univ, Inst Curie, Dept Diag & Theranost Med, Paris, France
[5] UniRouen Normandie Univ, Ctr Henri Becquerel, Dept Pathol, INSERM U1245, Rouen, France
[6] CNRS UMR3215, INSERM U934, Paris, France
[7] Inst Curie, Translat Res Dept, Residual Tumor & Response Treatment Lab, RT2Lab, Paris, France
[8] Inst Curie, Immun & Canc U932, INSERM, Paris, France
[9] Inst Curie, Dept Med Oncol, Paris, France
[10] Inst Curie, Dept Surg, Paris, France
[11] RIKEN AIP, Chuo ku, Tokyo, Japan
[12] IUCT, Dept Pathol, Toulouse, France
来源
关键词
breast cancer; digital pathology; whole slide images; treatment response; cross-validation; deep learning; multiple instance learning; small sample size;
D O I
10.3389/frsip.2022.851809
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The automatic analysis of stained histological sections is becoming increasingly popular. Deep Learning is today the method of choice for the computational analysis of such data, and has shown spectacular results for large datasets for a large variety of cancer types and prediction tasks. On the other hand, many scientific questions relate to small, highly specific cohorts. Such cohorts pose serious challenges for Deep Learning, typically trained on large datasets. In this article, we propose a modification of the standard nested cross-validation procedure for hyperparameter tuning and model selection, dedicated to the analysis of small cohorts. We also propose a new architecture for the particularly challenging question of treatment prediction, and apply this workflow to the prediction of response to neoadjuvant chemotherapy for Triple Negative Breast Cancer.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Molecular biomarkers for prediction of response to treatment and survival in triple negative breast cancer patients from Egypt
    Bahnassy, Abeer
    Mohanad, Marwa
    Ismail, Manal F.
    Shaarawy, Sabry
    El-Bastawisy, Ahmed
    Zekri, Abdel-Rahman N.
    [J]. EXPERIMENTAL AND MOLECULAR PATHOLOGY, 2015, 99 (02) : 303 - 311
  • [2] Thyroid Cancer Malignancy Prediction From Whole Slide Cytopathology Images
    Dov, David
    Kovalsky, Shahar Z.
    Cohen, Jonathan
    Range, Danielle Elliott
    Henao, Ricardo
    Carin, Lawrence
    [J]. MACHINE LEARNING FOR HEALTHCARE CONFERENCE, VOL 106, 2019, 106
  • [3] Prediction of homologous recombination status with deep learning on breast cancer whole slide images
    Lazard, Tristan
    Bataillon, Guillaume
    Walter, Thomas
    Vincent Salomon, Anne
    [J]. M S-MEDECINE SCIENCES, 2023, 39 (12): : 926 - 928
  • [4] Whole slide image features predict pathologic complete response and poor clinical outcomes in triple-negative breast cancer
    Hacking, Sean M.
    Karam, Julie
    Singh, Kamaljeet
    Uzun, Ece D. Gamsiz
    Brickman, Arlen
    Yakirevich, Evgeny
    Taliano, Ross
    Wang, Yihong
    [J]. PATHOLOGY RESEARCH AND PRACTICE, 2023, 246
  • [5] THORAXIAL - Triple-negative breast cancer: MRI-based prediction of treatment response
    Graewert, Stephanie
    [J]. ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2023, 195 (07): : 568 - 569
  • [6] Cancer Survival Prediction From Whole Slide Images With Self-Supervised Learning and Slide Consistency
    Fan, Lei
    Sowmya, Arcot
    Meijering, Erik
    Song, Yang
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (05) : 1401 - 1412
  • [7] Heterogeneity in treatment response in patients with triple negative breast cancer
    Denkert, C.
    [J]. BREAST, 2019, 44 : S4 - S5
  • [8] Automated Detection of Breast Cancer Metastases in Whole Slide Images
    Grover, Pallvi
    Singh, Raj Mohan
    [J]. 2018 FIRST INTERNATIONAL CONFERENCE ON SECURE CYBER COMPUTING AND COMMUNICATIONS (ICSCCC 2018), 2018, : 111 - 116
  • [9] Multiclass Classification of Breast Cancer in Whole-Slide Images
    Kwok, Scotty
    [J]. IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 931 - 940
  • [10] Prediction of cancer transcriptomes from whole-slide images with Vis-Gene
    Zheng, Yuanning
    Pizurica, Marija
    Carrillo-Perez, Francisco
    Wohlfart, Christian
    Yao, Wei
    Shamout, Nadia
    Gevaert, Olivier
    Vladimirova, Antoaneta
    [J]. CANCER RESEARCH, 2023, 83 (07)