Retrieval of cloud properties from thermal infrared radiometry using convolutional neural network

被引:26
|
作者
Wang, Quan [1 ]
Zhou, Chen [1 ,2 ,7 ]
Zhuge, Xiaoyong [3 ]
Liu, Chao [4 ,5 ]
Weng, Fuzhong [6 ]
Wang, Minghuai [1 ,2 ]
机构
[1] Nanjing Univ, Sch Atmospher Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Joint Int Res Lab Atmospher & Earth Syst Sci, Nanjing 210023, Peoples R China
[3] Nanjing Joint Inst Atmospher Sci, Key Lab Transportat Meteorol China Meteorol Adm, Nanjing 210041, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Nanjing 210044, Peoples R China
[5] Nanjing Univ Informat Sci & Technol, Sch Atmospher Phys, Key Lab Aerosol Cloud Precipitat China Meteorol Ad, Nanjing 210044, Peoples R China
[6] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing 100081, Peoples R China
[7] Nanjing Univ, Inst Climate & Global Change Res, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Cloud optical properties; Convolutional neural network; Remote sensing; Diurnal cycle; OPTIMAL ESTIMATION ALGORITHM; MICROPHYSICAL PROPERTIES; RADIATIVE PROPERTIES; OPTICAL-THICKNESS; LIGHT-SCATTERING; CIRRUS CLOUDS; TOP PRESSURE; WATER-VAPOR; ICE CLOUDS; SOLAR;
D O I
10.1016/j.rse.2022.113079
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, a deep learning algorithm is developed to consistently retrieve the daytime and nighttime cloud properties from passive satellite observations without auxiliary atmospheric parameters. The algorithm involves the thermal infrared (TIR) radiances, viewing geometry, and altitude into a convolutional neural network (denoted as TIR-CNN), and retrieves the cloud mask, cloud optical thickness (COT), effective particle radius (CER), and cloud top height (CTH) simultaneously. The TIR-CNN model is trained using daytime Moderate Resolution Imaging Spectroradiometer (MODIS) products during a full year, and the results are validated and evaluated using passive and active products observed in independent years. The evaluation results show that the cloud properties retrieved by the TIR-CNN are well consistent with all available MODIS day-time products (cloud mask, COT, CER, and CTH) and night-time products (cloud mask and CTH). The retrieved COT and CTH also show good agreements with active sensors for both daytime and nighttime, indicating that the algorithm performs stably in the diurnal cycle.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] THE RETRIEVAL OF CLOUD RADIATIVE AND MICROPHYSICAL PROPERTIES USING COMBINED NEAR-INFRARED AND MICROWAVE RADIOMETRY
    TAYLOR, JP
    ENGLISH, SJ
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1995, 121 (525) : 1083 - 1112
  • [2] The retrieval of cloud radiative and microphysical properties using combined near-infrared and microwave radiometry
    Taylor, J. P.
    English, S. J.
    Royal Meteorological Society. Quarterly Journal, 1995, 121 (525/A):
  • [3] Soil Moisture Retrieval from Airborne Multispectral and Infrared Images using Convolutional Neural Network
    Seo, Min-Guk
    Shin, Hyo-Sang
    Tsourdos, Antonios
    IFAC PAPERSONLINE, 2020, 53 (02): : 15852 - 15857
  • [4] Spectral Reconstruction from Thermal Infrared Multispectral Image Using Convolutional Neural Network and Transformer Joint Network
    Zhao, Enyu
    Qu, Nianxin
    Wang, Yulei
    Gao, Caixia
    REMOTE SENSING, 2024, 16 (07)
  • [5] Writer Identification and Retrieval Using a Convolutional Neural Network
    Fiel, Stefan
    Sablatnig, Robert
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT II, 2015, 9257 : 26 - 37
  • [6] Cloud properties retrieval using neural networks
    Cerdeña, A
    Pérez, JC
    González, A
    REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE IX, 2004, 5571 : 11 - 19
  • [7] Cloud classification and retrieval from spaceborne microwave radiometry using a simulated cloud database
    dAuria, G
    Marzano, FS
    Pierdicca, N
    Nossai, RP
    Basili, P
    Ciotti, P
    IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 2087 - 2089
  • [8] Vertical Profiles of Ice Cloud Microphysical Properties and Their Impacts on Cloud Retrieval Using Thermal Infrared Measurements
    Khatri, Pradeep
    Iwabuchi, Hironobu
    Saito, Masanori
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (10) : 5301 - 5319
  • [9] Cross-track infrared sounder cloud fraction retrieval using a deep neural network
    Liu, Qian
    Xu, Hui
    Houser, Paul R.
    Sun, Donglian
    Rice, Matthew
    Wang, Likun
    Duffy, Daniel Q.
    Yang, Chaowei
    COMPUTERS & GEOSCIENCES, 2023, 170
  • [10] Obtaining Cloud Base Height and Phase From Thermal Infrared Radiometry Using a Deep Learning Algorithm
    Wang, Quan
    Zhou, Chen
    Letu, Husi
    Zhu, Yannian
    Zhuge, Xiaoyong
    Liu, Chao
    Weng, Fuzhong
    Wang, Minghuai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61