Affine geometry of equal-volume polygons in 3-space

被引:1
|
作者
Craizer, Marcos [1 ]
Pesco, Sinesio [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, Rio De Janeiro, RJ, Brazil
关键词
Darboux vector field; Affine arc-length parameterization; Affine evolute; Projective length; Discrete affine geometry; DIFFERENTIAL GEOMETRY; PLANE-CURVES;
D O I
10.1016/j.cagd.2017.06.001
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Equal-volume polygons are obtained from adequate discretizations of curves in 3-space, contained or not in surfaces. In this paper we explore the similarities of these polygons with the affine arc-length parameterized smooth curves to develop a theory of discrete affine invariants. Besides obtaining discrete affine invariants, equal-volume polygons can also be used to estimate projective invariants of a planar curve. This theory has many potential applications, among them evaluation of the quality and computation of affine invariants of silhouette curves. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 56
页数:13
相关论文
共 50 条
  • [1] EQUAL-VOLUME JUDGMENTS OF TONES
    THOMAS, GJ
    AMERICAN JOURNAL OF PSYCHOLOGY, 1949, 62 (02): : 182 - 201
  • [2] MOBIUS TRANSFORMATIONS OF POLYGONS AND PARTITIONS OF 3-SPACE
    Randell, Richard
    Simon, Jonathan
    Tokle, Joshua
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2008, 17 (11) : 1401 - 1413
  • [3] ALGEBRAIC CHARACTERIZATION OF THE AFFINE PLANE AND THE AFFINE 3-SPACE
    SUGIE, T
    TOPOLOGICAL METHODS IN ALGEBRAIC TRANSFORMATION GROUPS, 1989, 80 : 177 - 190
  • [4] Translation surfaces in affine 3-space
    Lone, Moahmd Saleem
    Karacan, Murat Kemal
    Tuncer, Yilmaz
    Es, Hasan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (06): : 1944 - 1954
  • [5] Automorphisms of the Affine 3-Space of Degree 3
    Blanc, Jeremy
    Van Santen, Immanuel
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2022, 71 (02) : 857 - 912
  • [6] AFFINE ROTATION SURFACES OF ELLIPTIC TYPE IN AFFINE 3-SPACE
    Hasan, E. S.
    THERMAL SCIENCE, 2020, 24 : S399 - S409
  • [7] Affine translation surfaces in Euclidean 3-space
    Liu, Huili
    Yu, Yanhua
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2013, 89 (09) : 111 - 113
  • [8] On a class of Danielewski surfaces in affine 3-space
    Dubouloz, Adrien
    Poloni, Pierre-Marie
    JOURNAL OF ALGEBRA, 2009, 321 (07) : 1797 - 1812
  • [9] NATUREL MATES OF EQUIAFFINE SPACE CURVES IN AFFINE 3-SPACE
    Tuncer, Yilmaz
    Kocayigit, Huseyin
    Karacan, Murat Kemal
    THERMAL SCIENCE, 2019, 23 : S2149 - S2157
  • [10] Parabolic polygons and discrete affine geometry
    Craizer, Marcos
    Lewiner, Thomas
    Morvan, Jean-Marie
    SIBGRAPI 2006: XIX BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2006, : 19 - +