q-Heat flow and the gradient flow of the Renyi entropy in the p-Wasserstein space

被引:6
|
作者
Kell, Martin [1 ,2 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[2] Univ Tubingen, Math Inst, Morgenstelle 10, D-72076 Tubingen, Germany
关键词
Metric measure space; q-Heat flow; Renyi entropy; p-Wasserstein space; METRIC-MEASURE-SPACES; RICCI CURVATURE; DISPLACEMENT CONVEXITY; EVOLUTION-EQUATIONS; LIPSCHITZ FUNCTIONS; GEOMETRY; INEQUALITIES; TRANSPORT;
D O I
10.1016/j.jfa.2016.06.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the idea of a recent paper by Ambrosio-Gigli-Savare (2014) [5], we show that the L-2-gradient flow of the q-Cheeger energy, called q-heat flow, solves a generalized gradient flow problem of the Renyi entropy functional in the p-Wasserstein. For that, a further study of the q-heat flow is presented including a condition for its mass preservation. Under a convexity assumption on the upper gradient, which holds for all q >= 2, one gets uniqueness of the gradient flow and the two flows can be identified. Smooth solutions of the q-heat flow are solutions to the parabolic q-Laplace equation, i.e. partial derivative(t) f(t) = Delta(q)f(t). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:2045 / 2089
页数:45
相关论文
共 50 条
  • [1] Finsler structure in the p-Wasserstein space and gradient flows
    Agueh, Martial
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (1-2) : 35 - 40
  • [2] The heat equation on manifolds as a gradient flow in the Wasserstein space
    Erbar, Matthias
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01): : 1 - 23
  • [3] One-Dimensional Numerical Algorithms for Gradient Flows in the p-Wasserstein Spaces
    Martial Agueh
    Malcolm Bowles
    Acta Applicandae Mathematicae, 2013, 125 : 121 - 134
  • [4] Variational Wasserstein gradient flow
    Fan, Jiaojiao
    Zhang, Qinsheng
    Taghvaei, Amirhossein
    Chen, Yongxin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [5] Parameterized Wasserstein gradient flow
    Jin, Yijie
    Liu, Shu
    Wu, Hao
    Ye, Xiaojing
    Zhou, Haomin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 524
  • [6] One-Dimensional Numerical Algorithms for Gradient Flows in the p-Wasserstein Spaces
    Agueh, Martial
    Bowles, Malcolm
    ACTA APPLICANDAE MATHEMATICAE, 2013, 125 (01) : 121 - 134
  • [7] Neumann heat flow and gradient flow for the entropy on non-convex domains
    Lierl, Janna
    Sturm, Karl-Theodor
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (01)
  • [8] Neumann heat flow and gradient flow for the entropy on non-convex domains
    Janna Lierl
    Karl-Theodor Sturm
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [9] GRADIENT FLOW FORMULATION OF DIFFUSION EQUATIONS IN THE WASSERSTEIN SPACE OVER A METRIC GRAPH
    Erbar, Matthias
    Forkert, Dominik
    Maas, Jan
    Mugnolo, Delio
    NETWORKS AND HETEROGENEOUS MEDIA, 2022, 17 (05) : 687 - 717
  • [10] A new flow dynamic approach for Wasserstein gradient flows
    Cheng, Qing
    Liu, Qianqian
    Chen, Wenbin
    Shen, Jie
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 524