On Einstein Finsler metrics

被引:0
|
作者
Ulgen, Semail [1 ]
Sevim, Esra Sengelen [2 ]
Hacinliyan, Irma [3 ]
机构
[1] Antalya Bilim Univ, Dept Ind Engn, Antalya, Turkey
[2] Istanbul Bilgi Univ, Dept Math, Istanbul, Turkey
[3] Istanbul Tech Univ, Dept Math, Istanbul, Turkey
关键词
(alpha; beta)-metrics; Einstein metrics; Ricci curvature; Ricci-flat;
D O I
10.1142/S0129167X21500634
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study Finsler metrics expressed in terms of a Riemannian metric, a 1-form, and its norm and find equations with sufficient conditions for such Finsler metrics to become Ricci-flat. Using certain transformations, we show that these equations have solutions and lead to the construction of a large and special class of Einstein metrics.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] On a class of Einstein Finsler metrics
    Shen, Zhongmin
    Yu, Changtao
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (04)
  • [2] On a class of weakly Einstein Finsler metrics
    Shen, Zhongmin
    Yang, Guojun
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (02) : 773 - 790
  • [3] On generalized Einstein metrics in Finsler geometry
    Yang, Guojun
    Cheng, Xinyue
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 74 (1-2): : 171 - 185
  • [4] On a class of weakly Einstein Finsler metrics
    Zhongmin Shen
    Guojun Yang
    Israel Journal of Mathematics, 2014, 199 : 773 - 790
  • [5] On a class of Einstein-reversible Finsler metrics
    Yang, Guojun
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 60 : 80 - 103
  • [6] On a Class of Quasi-Einstein Finsler Metrics
    Hongmei Zhu
    The Journal of Geometric Analysis, 2022, 32
  • [7] Constructions of Einstein Finsler metrics by warped product
    Chen, Bin
    Shen, Zhongmin
    Zhao, Lili
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (11)
  • [8] On a Class of Quasi-Einstein Finsler Metrics
    Zhu, Hongmei
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (07)
  • [9] On Einstein-reversible mth root Finsler metrics
    Majidi, Jila
    Tayebi, Akbar
    Haji-Badali, Ali
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (06)
  • [10] The Characterizations on a Class of Weakly Weighted Einstein–Finsler Metrics
    Xinyue Cheng
    Hong Cheng
    The Journal of Geometric Analysis, 2023, 33