Label-free, non-invasive, and repeatable cell viability bioassay using dynamic full-field optical coherence microscopy and supervised machine learning

被引:12
|
作者
Park, Soongho [1 ]
Veluvolu, Vinay [1 ]
Martin, William S. [1 ]
Nguyen, Thien [1 ]
Park, Jinho [1 ]
Sackett, D. A. N. L. [1 ]
Boccara, Claude [2 ]
Gandjbakhce, Amir [1 ]
机构
[1] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, NIH, 49 Convent Dr, Bethesda, MD 20814 USA
[2] PSL Univ, Inst Langevin, ESPCI Paris, CNRS, 1 Rue Jussieu, F-75005 Paris, France
基金
美国国家卫生研究院;
关键词
IMAGE CYTOMETRY; CANCER-CELLS; TRYPAN BLUE; THERAPY;
D O I
10.1364/BOE.452471
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present a novel method that can assay cellular viability in real-time using supervised machine learning and intracellular dynamic activity data that is acquired in a labelfree, non-invasive, and non-destructive manner. Cell viability can be an indicator for cytology, treatment, and diagnosis of diseases. We applied four supervised machine learning models on the observed data and compared the results with a trypan blue assay. The cell death assay performance by the four supervised models had a balanced accuracy of 93.92 +/- 0.86%. Unlike staining techniques, where criteria for determining viability of cells is unclear, cell viability assessment using machine learning could be clearly quantified. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:3187 / 3194
页数:8
相关论文
共 34 条
  • [1] Label-free full-field Doppler phase microscopy based on optical computation
    Liu, Yuwei
    Yu, Shupei
    Zhang, Yuanwei
    Liu, Xuan
    BIOMEDICAL OPTICS EXPRESS, 2023, 14 (01) : 441 - 452
  • [2] Quantitative evaluation of the dynamic activity of HeLa cells in different viability states using dynamic full-field optical coherence microscopy
    Park, Soongho
    Nguyen, Thien
    Benoit, Emilie
    Sackett, D. A. N. L.
    Garmendia-Cedillos, Marcial
    Pursley, Randall
    Boccara, Claude
    Gandjbakhche, Amir
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (10) : 6431 - 6441
  • [3] Full-field optical coherence microscopy enables high-resolution label-free imaging of the dynamics of live mouse oocytes and early embryos
    Morawiec, Seweryn
    Ajduk, Anna
    Stremplewski, Patrycjusz
    Kennedy, Brendan F.
    Szkulmowski, Maciej
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [4] Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography
    Zarnescu, Livia
    Leung, Michael C.
    Abeyta, Michael
    Sudkamp, Helge
    Baer, Thomas
    Behr, Barry
    Ellerbee, Audrey K.
    JOURNAL OF BIOMEDICAL OPTICS, 2015, 20 (09)
  • [5] Label-free non-invasive classification of rice seeds using optical coherence tomography assisted with deep neural network
    Joshi, Deepa
    Butola, Ankit
    Kanade, Sheetal Raosaheb
    Prasad, Dilip K.
    Mithra, S. V. Amitha
    Singh, N. K.
    Bisht, Deepak Singh
    Mehta, Dalip Singh
    OPTICS AND LASER TECHNOLOGY, 2021, 137 (137):
  • [6] Non-invasive in vivo characterization of skin wound healing using label-free multiphoton microscopy
    Jones, Jake D.
    Majid, Fariah
    Ramser, Hallie
    Quinn, Kyle P.
    PHOTONICS IN DERMATOLOGY AND PLASTIC SURGERY, 2017, 10037
  • [7] LABEL-FREE CLASSIFICATION OF CELL TYPES BY IMAGING OF CELL MEMBRANE FLUCTUATIONS USING LOW-COHERENT FULL-FIELD QUANTITATIVE PHASE MICROSCOPY
    Yamauchi, Toyohiko
    Sugiyama, Norikazu
    Sakurai, Takashi
    Iwai, Hidenao
    Yamashita, Yutaka
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XVII, 2010, 7570
  • [8] Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography
    Zheng, Jing-gao
    Lu, Danyu
    Chen, Tianyuan
    Wang, Chengming
    Tian, Ning
    Zhao, Fengying
    Huo, Tiancheng
    Zhang, Ning
    Chen, Dieyan
    Ma, Wanyun
    Sun, Jia-lin
    Xue, Ping
    JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (07)
  • [9] Improved cell segmentation using deep learning in label-free optical microscopy images
    Ayanzadeh, Aydin
    Yalçin Özuysal, Özden
    Pesen Okvur, Devrim
    Önal, Sevgi
    TÖreyİn, Behçet Uğur
    Ünay, Devrim
    Turkish Journal of Electrical Engineering and Computer Sciences, 2021, 29 : 2855 - 2868
  • [10] Improved cell segmentation using deep learning in label-free optical microscopy images
    Ayanzadeh, Aydin
    Ozuysal, Ozden Yalcin
    Okvur, Devrim Pesen
    Onal, Sevgi
    Toreyin, Behcet Ugur
    Unay, Devrim
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 : 2855 - 2868