Maximal minors of a matrix with linear form entries

被引:1
|
作者
Ito, Hiroya [1 ]
Noma, Atsushi [2 ]
Ohno, Masahiro [1 ]
机构
[1] Univ Electrocommun, Dept Math, Chofu, Tokyo 182, Japan
[2] Yokohama Natl Univ, Dept Math, Yokohama, Kanagawa 240, Japan
来源
LINEAR & MULTILINEAR ALGEBRA | 2015年 / 63卷 / 08期
关键词
13D02; 15B33; 35A23; maximal minors; Eagon-Northcott complexes; polynomials; Korn's inequality;
D O I
10.1080/03081087.2014.959516
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P be a matrix whose entries are homogeneous polynomials in n variables of degree one over an algebraically closed field. We show that the maximal minors, say m-minors, of P generate the linear space of homogeneous polynomials of degree m if P has the maximal rank m at every point of the affine n-space except the origin.
引用
收藏
页码:1599 / 1606
页数:8
相关论文
共 50 条