Implications of Kunita-Ito-Wentzell Formula for k-Forms in Stochastic Fluid Dynamics

被引:13
|
作者
de Leon, Aythami Bethencourt [1 ]
Holm, Darryl D. [1 ]
Luesink, Erwin [1 ]
Takao, So [1 ]
机构
[1] Imperial Coll London, Math Dept, London, England
基金
英国工程与自然科学研究理事会;
关键词
Stochastic geometric mechanics; Lie derivatives with respect to stochastic vector fields; Pull-back by smooth maps with stochastic time parameterization; LOCATION UNCERTAINTY; GEOPHYSICAL FLOWS; EQUATIONS;
D O I
10.1007/s00332-020-09613-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the Ito-Wentzell formula for the evolution of a time-dependent stochastic field along a semimartingale to k-form-valued stochastic processes. The result is the Kunita-Ito-Wentzell (KIW) formula for k-forms. We also establish a correspondence between the KIW formula for k-forms derived here and a certain class of stochastic fluid dynamics models which preserve the geometric structure of deterministic ideal fluid dynamics. This geometric structure includes Eulerian and Lagrangian variational principles, Lie-Poisson Hamiltonian formulations and natural analogues of the Kelvin circulation theorem, all derived in the stochastic setting.
引用
收藏
页码:1421 / 1454
页数:34
相关论文
共 2 条
  • [1] Implications of Kunita–Itô–Wentzell Formula for k-Forms in Stochastic Fluid Dynamics
    Aythami Bethencourt de Léon
    Darryl D. Holm
    Erwin Luesink
    So Takao
    [J]. Journal of Nonlinear Science, 2020, 30 : 1421 - 1454
  • [2] Stochastic modelling in fluid dynamics: Ito versus Stratonovich
    Holm, Darryl D.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2237):