A novel phase-field based cohesive zone model for modeling interfacial failure in composites

被引:9
|
作者
Bian, Pei-Liang [1 ]
Qing, Hai [1 ]
Schmauder, Siegfried [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing, Peoples R China
[2] Univ Stuttgart, Inst Mat Testing Mat Sci & Strength Mat, Stuttgart, Germany
基金
中国国家自然科学基金;
关键词
cohesive crack; finite element method; interfacial debonding; phase-field theory; FINITE-ELEMENT-METHOD; BRITTLE-FRACTURE; CRACK-PROPAGATION; DAMAGE; FIBER; FRAMEWORK; KINKING; GROWTH;
D O I
10.1002/nme.6821
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interface plays a critical role in the mechanical properties of composites. In the present work, a novel phase-field based cohesive zone model (CZM) is proposed for the cracking simulation. The competition and interaction between the bulk and interfacial cracking are taken into consideration directly in both displacement- and phase-field. A family of modified degradation functions is utilized to describe the traction-separation law in the CZM. Finite element implementation of the present CZM was carried out with a completely staggered algorithm. Several numerical examples, including a single bar tension test, a double cantilever beam test, a three-point bending test, and a single-fiber reinforced composite test, are carried out to verify the present model by comparison with existing numerical and experimental results. The present model shows its advantage on modeling interaction between bulk and interfacial cracking.
引用
收藏
页码:7054 / 7077
页数:24
相关论文
共 50 条
  • [1] Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model
    Vinh Phu Nguyen
    Wu, Jian-Ying
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 340 : 1000 - 1022
  • [2] Modeling microfracture evolution in heterogeneous composites: A coupled cohesive phase-field model
    Li, G.
    Yin, B. B.
    Zhang, L. W.
    Liew, K. M.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2020, 142
  • [3] Phase-field modeling of interfacial fracture in quasicrystal composites
    Li, Hongzhao
    Li, Weidong
    Tan, Yu
    Zhou, Xiandong
    Fan, Haidong
    Wang, Qingyuan
    Li, Peidong
    Engineering Fracture Mechanics, 2025, 314
  • [4] Internal-interfacial cracking interaction: Combined phase-field and discontinuous Galerkin/cohesive zone modeling
    Zou, Chenqi
    Yang, Hanming
    Chen, Gong
    Wang, Di
    Zang, Mengyan
    Chen, Shunhua
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 273
  • [5] Phase-field regularised cohesive zone model for interface modelling
    Chen, L.
    de Borst, R.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2022, 122
  • [6] A phase-field regularized cohesive zone model for hydrogen assisted cracking
    Wu, Jian-Ying
    Mandal, Tushar Kanti
    Vinh Phu Nguyen
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 358
  • [7] A phase-field cohesive zone model for fracture simulation of asphalt mixture
    Han, Dongdong
    Liu, Guoqiang
    Yang, Tao
    Xie, Yichang
    Zhao, Yongli
    ENGINEERING FRACTURE MECHANICS, 2023, 281
  • [8] A phase-field model for cohesive fracture
    Verhoosel, Clemens V.
    de Borst, Rene
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 96 (01) : 43 - 62
  • [9] Phase-field modelling of cohesive interface failure
    de Borst, R.
    Chen, L.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (09)
  • [10] Cohesive Zone Interpretations of Phase-Field Fracture Models
    Tran, H.
    Chew, H.B.
    Journal of Applied Mechanics, Transactions ASME, 2022, 89 (12):