Irreversibility and entanglement spectrum statistics in quantum circuits

被引:29
|
作者
Shaffer, Daniel [1 ]
Chamon, Claudio [1 ]
Hamma, Alioscia [2 ]
Mucciolo, Eduardo R. [3 ]
机构
[1] Boston Univ, Dept Phys, Boston, MA 02215 USA
[2] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing 100084, Peoples R China
[3] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
quantum chaos; entanglement in extended quantum systems (theory);
D O I
10.1088/1742-5468/2014/12/P12007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We show that in a quantum system evolving unitarily under a stochastic quantum circuit the notions of irreversibility, universality of computation, and entanglement are closely related. As the state evolves from an initial product state, it gets asymptotically maximally entangled. We define irreversibility as the failure of searching for a disentangling circuit using a Metropolis-like algorithm. We show that irreversibility corresponds to Wigner-Dyson statistics in the level spacing of the entanglement eigenvalues, and that this is obtained from a quantum circuit made from a set of universal gates for quantum computation. If, on the other hand, the system is evolved with a nonuniversal set of gates, the statistics of the entanglement level spacing deviates from Wigner-Dyson and the disentangling algorithm succeeds. These results open a new way to characterize irreversibility in quantum systems.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Emergent Irreversibility and Entanglement Spectrum Statistics
    Chamon, Claudio
    Hamma, Alioscia
    Mucciolo, Eduardo R.
    PHYSICAL REVIEW LETTERS, 2014, 112 (24)
  • [2] Nonuniversal entanglement level statistics in projection-driven quantum circuits
    Zhang, Lei
    Reyes, Justin A.
    Kourtis, Stefanos
    Chamon, Claudio
    Mucciolo, Eduardo R.
    Ruckenstein, Andrei E.
    PHYSICAL REVIEW B, 2020, 101 (23)
  • [3] Entanglement Irreversibility from Quantum Discord and Quantum Deficit
    Cornelio, Marcio F.
    de Oliveira, Marcos C.
    Fanchini, Felipe F.
    PHYSICAL REVIEW LETTERS, 2011, 107 (01)
  • [4] Quantum entanglement and particle statistics
    Omar, Y
    Paunkovic, N
    Bose, S
    Vedral, V
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 33 - 36
  • [5] Temporal Entanglement in Chaotic Quantum Circuits
    Foligno, Alessandro
    Zhou, Tianci
    Bertini, Bruno
    PHYSICAL REVIEW X, 2023, 13 (04)
  • [6] Implementation of Entanglement Witnesses with Quantum Circuits
    Shen, Shu-Qian
    Gao, Xin-Qi
    Zhang, Rui-Qi
    Li, Ming
    Fei, Shao-Ming
    ADVANCED QUANTUM TECHNOLOGIES, 2024,
  • [7] Quantum statistics and entanglement in a Raman process
    Perinova, V.
    Luks, A.
    Krepelka, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (03)
  • [8] Entanglement concentration using quantum statistics
    Paunkovic, N
    Omar, Y
    Bose, S
    Vedral, V
    PHYSICAL REVIEW LETTERS, 2002, 88 (18) : 4 - 187903
  • [10] Irreversibility of Entanglement Loss
    Buscemi, Francesco
    THEORY OF QUANTUM COMPUTATION, COMMUNICATION, AND CRYPTOGRAPHY, 2008, 5106 : 16 - 28