Optogenetic dissection of Rac1 and Cdc42 gradient shaping

被引:49
|
作者
de Beco, S. [1 ]
Vaidziulyte, K. [1 ]
Manzi, J. [1 ]
Dalier, F. [2 ]
di Federico, F. [1 ]
Cornilleau, G. [1 ]
Dahan, M. [1 ]
Coppey, M. [1 ]
机构
[1] Sorbonne Univ, CNRS, PSL Res Univ, Lab Physico Chim Curie,Inst Curie, F-75005 Paris, France
[2] Sorbonne Univ, CNRS, PSL Res Univ, PASTEUR,Dept Chim,Ecole Normale Super,UMR 8640, F-75005 Paris, France
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
关键词
CELL-MIGRATION; RHO-GTPASES; SPATIOTEMPORAL DYNAMICS; DIRECTED MIGRATION; NEURITE OUTGROWTH; POSITIVE FEEDBACK; LIVING CELLS; POLARITY; ACTIVATION; CHEMOTAXIS;
D O I
10.1038/s41467-018-07286-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
During cell migration, Rho GTPases spontaneously form spatial gradients that define the front and back of cells. At the front, active Cdc42 forms a steep gradient whereas active Rac1 forms a more extended pattern peaking a few microns away. What are the mechanisms shaping these gradients, and what is the functional role of the shape of these gradients? Here we report, using a combination of optogenetics and micropatterning, that Cdc42 and Rac1 gradients are set by spatial patterns of activators and deactivators and not directly by transport mechanisms. Cdc42 simply follows the distribution of Guanine nucleotide Exchange Factors, whereas Rac1 shaping requires the activity of a GTPase-Activating Protein, beta 2-chimaerin, which is sharply localized at the tip of the cell through feedbacks from Cdc42 and Rac1. Functionally, the spatial extent of Rho GTPases gradients governs cell migration, a sharp Cdc42 gradient maximizes directionality while an extended Rac1 gradient controls the speed.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Optogenetic dissection of Rac1 and Cdc42 gradient shaping
    S. de Beco
    K. Vaidžiulytė
    J. Manzi
    F. Dalier
    F. di Federico
    G. Cornilleau
    M. Dahan
    M. Coppey
    Nature Communications, 9
  • [2] Regulation of anoikis by Cdc42 and Rac1
    Cheng, TL
    Symons, M
    Jou, TS
    EXPERIMENTAL CELL RESEARCH, 2004, 295 (02) : 497 - 511
  • [3] RhoG signals in parallel with Rac1 and Cdc42
    Wennerberg, K
    Ellerbroek, SM
    Liu, RY
    Karnoub, AE
    Burridge, K
    Der, CJ
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (49) : 47810 - 47817
  • [4] RhoG signals in parallel with Rac1 and Cdc42
    Wennerberg, K
    Burridge, K
    Der, CJ
    MOLECULAR BIOLOGY OF THE CELL, 2001, 12 : 414A - 414A
  • [5] Rac1 and Cdc42 as drivers in ovarian cancer metastasis
    Rivera, Melanie
    Dominguez, Dayna
    Pauken, Christine
    Romero, Elsa
    Kenney, S. Ray
    Shi, Yang
    Lee, Ji-Hyun
    Gillette, Jennifer
    Hudson, Laurie G.
    Wandinger-Ness, Angela
    CANCER RESEARCH, 2018, 78 (13)
  • [6] Expressions of Rac1, Tiam1 and Cdc42 in retinoblastoma
    Adithi, Mohan
    Venkatesan, Nahini
    Kandalam, Mallikarjuna
    Biswas, Jyotirmay
    Krishnakumar, Subramanian
    EXPERIMENTAL EYE RESEARCH, 2006, 83 (06) : 1446 - 1452
  • [7] Rac1 and Cdc42 GTPases as novel targets in ovarian cancer
    Wandinger-Ness, Angela
    Kenney, S. Ray
    Agola, Jacob
    Roxby, Joshua
    Surviladze, Zurab
    Silberberg, Melina
    Zeineldin, Reema
    Vestling, Anna
    Bologa, Cristian
    Ursu, Oleg
    Oprea, Tudor
    Muller, Carolyn
    Lomo, Lesley
    Sklar, Larry
    Hudson, Laurie G.
    CANCER RESEARCH, 2011, 71
  • [8] Distinct predictive performance of Rac1 and Cdc42 in cell migration
    Masataka Yamao
    Honda Naoki
    Katsuyuki Kunida
    Kazuhiro Aoki
    Michiyuki Matsuda
    Shin Ishii
    Scientific Reports, 5
  • [9] Rac1、Cdc42在肿瘤方面的研究
    郭世洲
    原禄双
    张俊华
    医学综述, 2007, (11) : 821 - 823
  • [10] Actin binding protein complexes regulated by Rac1/Cdc42
    Seifert, J. L.
    Alfaro, M.
    Barker, A.
    Hynds, D. L.
    JOURNAL OF NEUROCHEMISTRY, 2008, 104 : 34 - 34