A linearly-implicit and conservative Fourier pseudo-spectral method for the 3D Gross-Pitaevskii equation with angular momentum rotation

被引:10
|
作者
Cui, Jin [1 ,2 ]
Cai, Wenjun [1 ]
Wang, Yushun [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Prov Key Lab NSLSCS, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Vocat Coll Informat Technol, Dept Basic Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Gross-Pitaevskii equation; Angular momentum rotation; Fourier pseudo-spectral method; Conservation law; Error estimate; BOSE-EINSTEIN CONDENSATION; FINITE-DIFFERENCE SCHEME; NUMERICAL-METHOD; DYNAMICS; CONVERGENCE; EFFICIENT; VORTICES;
D O I
10.1016/j.cpc.2020.107160
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a linearly-implicit Fourier pseudo-spectral method which preserves discrete mass and energy is developed for the time-dependent 3D Gross-Pitaevskii equation with additional angular momentum rotation. By establishing several discrete semi-norm equivalences between the Fourier pseudo-spectral method and the finite difference method, we establish an optimal H-1-error estimate for the proposed scheme without any restrictions on the grid ratio. The convergent rate of the numerical solution is proved to be of order O(N-r + tau(2)), where N is the number of spatial nodes and tau is the time step. Numerical results are reported to verify the efficiency and accuracy of our new method. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:26
相关论文
共 32 条
  • [1] Unconditional convergence of a linearized implicit finite difference method for the 2D/3D Gross-Pitaevskii equation with angular momentum rotation
    Tingchun Wang
    Boling Guo
    Science China(Mathematics), 2019, 62 (09) : 1669 - 1686
  • [2] Unconditional convergence of linearized implicit finite difference method for the 2D/3D Gross-Pitaevskii equation with angular momentum rotation
    Wang, Tingchun
    Guo, Boling
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (09) : 1669 - 1686
  • [3] Unconditional convergence of linearized implicit finite difference method for the 2D/3D Gross-Pitaevskii equation with angular momentum rotation
    Tingchun Wang
    Boling Guo
    Science China Mathematics, 2019, 62 : 1669 - 1686
  • [4] A NEW LINEAR AND CONSERVATIVE FINITE DIFFERENCE SCHEME FOR THE GROSS-PITAEVSKII EQUATION WITH ANGULAR MOMENTUM ROTATION
    Cui, Jin
    Cai, Wenjun
    Jiang, Chaolong
    Wang, Yushun
    ANZIAM JOURNAL, 2019, 61 (02): : 204 - 232
  • [5] A Hermite Pseudo-spectral method for solving systems of Gross-Pitaevskii equations
    Weishaeupl, Rada M.
    Schmeiser, Christian
    Markowich, Peter A.
    Pablo Borgna, Juan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (02) : 299 - 312
  • [6] THE FINITE ELEMENT METHOD FOR THE TIME-DEPENDENT GROSS-PITAEVSKII EQUATION WITH ANGULAR MOMENTUM ROTATION
    Henning, Patrick
    Malqvist, Axel
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) : 923 - 952
  • [7] Scattering for the 3D Gross-Pitaevskii Equation
    Guo, Zihua
    Hani, Zaher
    Nakanishi, Kenji
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 359 (01) : 265 - 295
  • [8] A conservative Fourier pseudo-spectral method for the nonlinear Schrodinger equation
    Gong, Yuezheng
    Wang, Qi
    Wang, Yushun
    Cai, Jiaxiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 328 : 354 - 370
  • [9] OPTIMAL ERROR ESTIMATES OF FINITE DIFFERENCE METHODS FOR THE GROSS-PITAEVSKII EQUATION WITH ANGULAR MOMENTUM ROTATION
    Bao, Weizhu
    Cai, Yongyong
    MATHEMATICS OF COMPUTATION, 2013, 82 (281) : 99 - 128
  • [10] Soliton solutions of the 3D Gross-Pitaevskii equation by a potential control method
    Fedele, R.
    Eliasson, B.
    Haas, E.
    Shukla, P. K.
    Jovanovic, D.
    De Nicola, S.
    NEW FRONTIERS IN ADVANCED PLASMA PHYSICS, 2010, 1306 : 61 - +