The Intersection Numbers of Nearly Kirkman Triple Systems

被引:1
|
作者
Fan, Bing Li [1 ]
Jiang, Zhong Hao [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Nearly kirkman triple system; parallel class; frame; intersection number; GROUP-DIVISIBLE DESIGNS; SUBSYSTEMS; EXISTENCE; COMMON;
D O I
10.1007/s10114-016-5218-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the intersection numbers of nearly Kirkman triple systems. J(N)[v] is the set of all integers k such that there is a pair of NKTS(v)s with a common uncovered collection of 2-subset intersecting in k triples. It has been established that J(N) left perpendicular v right perpendicular = {0, 1,...,v(v-2)/6 - 6, v(v-2)/6 - 4, v(v-2)/6} for any integers v 0 (mod 6) and v >= 66. For v <= 60, there are 8 cases left undecided.
引用
收藏
页码:1430 / 1450
页数:21
相关论文
共 50 条
  • [1] The Intersection Numbers of Nearly Kirkman Triple Systems
    Bing Li FAN
    Zhong Hao JIANG
    ActaMathematicaSinica, 2016, 32 (12) : 1430 - 1450
  • [2] The Intersection Numbers of Nearly Kirkman Triple Systems
    Bing Li FAN
    Zhong Hao JIANG
    Acta Mathematica Sinica,English Series, 2016, (12) : 1430 - 1450
  • [3] The intersection numbers of nearly Kirkman triple systems
    Bing Li Fan
    Zhong Hao Jiang
    Acta Mathematica Sinica, English Series, 2016, 32 : 1430 - 1450
  • [4] Intersection numbers of Kirkman triple systems
    Chang, YX
    Lo Faro, G
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 86 (02) : 348 - 361
  • [5] Embeddings of nearly Kirkman triple systems
    Tang, S
    Shen, H
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 94 (02) : 327 - 333
  • [6] On the existence of nearly Kirkman triple systems with subsystems
    Deng, Dameng
    Rees, Rolf
    Shen, Hao
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 48 (01) : 17 - 33
  • [7] On the existence of nearly Kirkman triple systems with subsystems
    Dameng Deng
    Rolf Rees
    Hao Shen
    Designs, Codes and Cryptography, 2008, 48 : 17 - 33
  • [8] Doubly Resolvable Nearly Kirkman Triple Systems
    Abel, R. Julian R.
    Chan, Nigel
    Colbourn, Charles J.
    Lamken, E. R.
    Wang, Chengmin
    Wang, Jinhua
    JOURNAL OF COMBINATORIAL DESIGNS, 2013, 21 (08) : 342 - 358
  • [9] The flower intersection problem for Kirkman triple systems
    Chang, YX
    Lo Faro, G
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 110 (1-2) : 159 - 177
  • [10] Further results on nearly Kirkman triple systems with subsystems
    Deng, DM
    Rees, R
    Shen, H
    DISCRETE MATHEMATICS, 2003, 270 (1-3) : 99 - 114