Index of compact minimal submanifolds of the Berger spheres

被引:2
|
作者
Torralbo, Francisco [1 ]
Urbano, Francisco [1 ]
机构
[1] Univ Granada, Dept Geometry & Topol, Granada, Spain
关键词
MEAN-CURVATURE SURFACES; MORSE INDEX; HYPERSURFACES; REAL;
D O I
10.1007/s00526-022-02215-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stability and the index of compact minimal submanifolds of the Berger spheres s(tau)(2n+1), 0 < tau <= 1, are studied. Unlike the case of the standard sphere (tau = 1), where there are no stable compact minimal submanifolds, the Berger spheres have stable ones if and only if tau(2) <= 1/2. Moreover, there are no stable compact minimal d-dimensional submanifolds of s(tau)(2n+1) when 1/(d+ 1) < tau(2) <= 1 and the stable ones are classified for tau(2) = 1/(d +1) when the submanifold is embedded. Finally, the compact orientable minimal surfaces of with index one are classified for 1/3 <= tau(2) <= 1.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Index of compact minimal submanifolds of the Berger spheres
    Francisco Torralbo
    Francisco Urbano
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [2] Compact minimal surfaces in the Berger spheres
    Torralbo, Francisco
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 41 (04) : 391 - 405
  • [3] Compact minimal surfaces in the Berger spheres
    Francisco Torralbo
    Annals of Global Analysis and Geometry, 2012, 41 : 391 - 405
  • [4] The Morse index of minimal products of minimal submanifolds in spheres
    Changping Wang
    Peng Wang
    Science China Mathematics, 2023, 66 (04) : 799 - 818
  • [5] The Morse index of minimal products of minimal submanifolds in spheres
    Wang, Changping
    Wang, Peng
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (04) : 799 - 818
  • [6] The Morse index of minimal products of minimal submanifolds in spheres
    Changping Wang
    Peng Wang
    Science China Mathematics, 2023, 66 : 799 - 818
  • [7] Minimal Submanifolds of Spheres and Cones
    M. I. Zelikin
    Yu. S. Osipov
    Proceedings of the Steklov Institute of Mathematics, 2019, 307 : 172 - 178
  • [8] Minimal submanifolds of spheres and cones
    Zelikin, M. I.
    Osipov, Yu. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (03): : 100 - 107
  • [9] Minimal Submanifolds of Spheres and Cones
    Zelikin, M. I.
    Osipov, Yu. S.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 307 (SUPPL 1) : 172 - 178
  • [10] A class of minimal submanifolds in spheres
    Dajczer, Marcos
    Vlachos, Theodoros
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2017, 69 (03) : 1197 - 1212