Fabric defect detection based on deep-feature and low-rank decomposition

被引:10
|
作者
Liu, Zhoufeng [1 ]
Wang, Baorui [1 ]
Li, Chunlei [1 ]
Yu, Miao [1 ]
Ding, Shumin [1 ]
机构
[1] Zhongyuan Univ Technol, Sch Elect & Informat Engn, Zhengzhou 450007, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-scale convolutional neural network; fabric image; low-rank decomposition; defect detection;
D O I
10.1177/1558925020903026
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
Fabric defect detection plays an important role in controlling the quality of textile production. In this article, a novel fabric defect detection algorithm is proposed based on a multi-scale convolutional neural network and low-rank decomposition model. First, multi-scale convolutional neural network, which can extract the multi-scale deep feature of the image using multiple nonlinear transformations, is adopted to improve the characterization ability of fabric images with complex textures. The effective feature extraction makes the background lie in a low-rank subspace, and a sparse defect deviates from the low-rank subspace. Then, the low-rank decomposition model is constructed to decompose the feature matrix into the low-rank part (background) and the sparse part (salient defect). Finally, the saliency maps generated by the sparse matrix are segmented based on an improved optimal threshold to locate the fabric defect regions. Experimental results indicate that the feature extracted by the multi-scale convolutional neural network is more suitable for characterizing the fabric texture than the traditional hand-crafted feature extraction methods, such as histogram of oriented gradient, local binary pattern, and Gabor. The adopted low-rank decomposition model can effectively separate the defects from the background. Moreover, the proposed method is superior to state-of-the-art methods in terms of its adaptability and detection efficiency.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Fabric defect detection based on low-rank decomposition with structural constraints
    Liu, Guohua
    Li, Fei
    [J]. VISUAL COMPUTER, 2022, 38 (02): : 639 - 653
  • [2] Fabric defect detection method based on cascaded low-rank decomposition
    Li, Chunlei
    Liu, Chaodie
    Liu, Zhoufeng
    Yang, Ruimin
    Huang, Yun
    [J]. INTERNATIONAL JOURNAL OF CLOTHING SCIENCE AND TECHNOLOGY, 2020, 32 (04) : 483 - 498
  • [3] Fabric defect detection based on low-rank decomposition with structural constraints
    Guohua Liu
    Fei Li
    [J]. The Visual Computer, 2022, 38 : 639 - 653
  • [4] Fabric Defect Detection Based on Visual Saliency Using Deep Feature and Low-rank Recovery
    Liu, Zhoufeng
    Wang, Baorui
    Li, Chunlei
    Li, Bicao
    Dong, Yan
    [J]. NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [5] Defect Detection for Patterned Fabric Images Based on GHOG and Low-Rank Decomposition
    Li, Chunlei
    Gao, Guangshuai
    Liu, Zhoufeng
    Huang, Di
    Xi, Jiangtao
    [J]. IEEE ACCESS, 2019, 7 : 83962 - 83973
  • [6] Fabric defect detection based on deep-handcrafted feature and weighted low-rank matrix representation
    Li, Chunlei
    Jiang, Ban
    Liu, Zhoufeng
    Dong, Yan
    Tang, Shuili
    Weng, Dawei
    [J]. JOURNAL OF ENGINEERED FIBERS AND FABRICS, 2021, 16
  • [7] FABRIC DEFECT DETECTION BASED ON IMPROVED LOW-RANK AND SPARSE MATRIX DECOMPOSITION
    Wang, Jianzhu
    Li, Qingyong
    Gan, Jinrui
    Yu, Haomin
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2776 - 2780
  • [8] Fabric defect detection algorithm based on Gabor filter and low-rank decomposition
    Zhang Duo
    Gao Guangshuai
    Li Chunlei
    [J]. EIGHTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2016), 2016, 10033
  • [9] Robust low-rank decomposition of multi-channel feature matrices for fabric defect detection
    Chunlei Li
    Chaodie Liu
    Guangshuai Gao
    Zhoufeng Liu
    Yuping Wang
    [J]. Multimedia Tools and Applications, 2019, 78 : 7321 - 7339
  • [10] Robust low-rank decomposition of multi-channel feature matrices for fabric defect detection
    Li, Chunlei
    Liu, Chaodie
    Gao, Guangshuai
    Liu, Zhoufeng
    Wang, Yuping
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (06) : 7321 - 7339