Estimating Biophysical Parameters of Individual Trees in an Urban Environment Using Small Footprint Discrete-Return Imaging Lidar

被引:53
|
作者
Shrestha, Rupesh [1 ]
Wynne, Randolph H. [2 ]
机构
[1] Idaho State Univ, Dept Geosci, Boise Ctr Aerosp Lab, Boise, ID 83702 USA
[2] Virginia Polytech Inst & State Univ, Dept Forest Resources & Environm Conservat, Blacksburg, VA 24061 USA
关键词
biomass; carbon; remote sensing; urban forestry; airborne laser scanning; FOREST STAND CHARACTERISTICS; AIRBORNE SCANNING LASER; ABOVEGROUND BIOMASS; MULTISPECTRAL DATA; CARBON STORAGE; STEM VOLUME; LEAF-AREA; ETM+ DATA; HEIGHT; INVENTORY;
D O I
10.3390/rs4020484
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Quantification of biophysical parameters of urban trees is important for urban planning, and for assessing carbon sequestration and ecosystem services. Airborne lidar has been used extensively in recent years to estimate biophysical parameters of trees in forested ecosystems. However, similar studies are largely lacking for individual trees in urban landscapes. Prediction models to estimate biophysical parameters such as height, crown area, diameter at breast height, and biomass for over two thousand individual trees were developed using best subsets multiple linear regression for a study area in central Oklahoma, USA using point cloud distributional metrics from an Optech ALTM 2050 lidar system. A high level of accuracy was attained for estimating individual tree height (R-2 = 0.89), dbh (R-2 = 0.82), crown diameter (R-2 = 0.90), and biomass (R-2 = 0.67) using lidar-based metrics for pooled data of all tree species. More variance was explained in species-specific estimates of biomass (R-2 = 0.68 for Juniperus virginiana to 0.84 for Ulmus parviflora) than in estimates from broadleaf deciduous (R-2 = 0.63) and coniferous (R-2 = 0.45) taxonomic groups-or the data set analysed as a whole (R-2 = 0.67). The metric crown area performed particularly well for most of the species-specific biomass equations, which suggests that tree crowns should be delineated accurately, whether manually or using automatic individual tree detection algorithms, to obtain a good estimation of biomass using lidar-based metrics.
引用
收藏
页码:484 / 508
页数:25
相关论文
共 25 条
  • [1] Modeling individual trees in an urban environment using dense discrete return LiDAR
    Bandyopadhyay, Madhurima
    van Aardt, Jan A. N.
    van Leeuwen, Martin
    LASER RADAR TECHNOLOGY AND APPLICATIONS XX; AND ATMOSPHERIC PROPAGATION XII, 2015, 9465
  • [2] MAPPING UNDERSTORY TREES USING AIRBORNE DISCRETE-RETURN LIDAR DATA
    Korpela, I.
    Hovi, A.
    Morsdorf, F.
    ISPRS HANNOVER WORKSHOP 2011: HIGH-RESOLUTION EARTH IMAGING FOR GEOSPATIAL INFORMATION, 2011, 39-4 (W19): : 159 - 164
  • [3] Estimating the height of wetland vegetation using airborne discrete-return LiDAR data
    Nie, Sheng
    Wang, Cheng
    Xi, Xiaohuan
    Luo, Shezhou
    Li, Shihua
    Tian, Jianlin
    OPTIK, 2018, 154 : 267 - 274
  • [4] Estimating FPAR of maize canopy using airborne discrete-return LiDAR data
    Luo, Shezhou
    Wang, Cheng
    Xi, Xiaohuan
    Pan, Feifei
    OPTICS EXPRESS, 2014, 22 (05): : 5106 - 5117
  • [5] Estimation of pruning biomass of olive trees using airborne discrete-return LiDAR data
    Estornell, J.
    Ruiz, L. A.
    Velazquez-Marti, B.
    Lopez-Cortes, I.
    Salazar, D.
    Fernandez-Sarria, A.
    BIOMASS & BIOENERGY, 2015, 81 : 315 - 321
  • [6] Estimating Leaf Area Index of Maize Using Airborne Discrete-Return LiDAR Data
    Nie, Sheng
    Wang, Cheng
    Dong, Pinliang
    Xi, Xiaohuan
    Luo, Shezhou
    Zhou, Hangyu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (07) : 3259 - 3266
  • [7] Airborne small-footprint discrete-return LiDAR data in the assessment of boreal mire surface patterns, vegetation, and habitats
    Korpela, Ilkka
    Koskinen, Markku
    Vasander, Harri
    Holopainen, Markus
    Minkkinen, Kari
    FOREST ECOLOGY AND MANAGEMENT, 2009, 258 (07) : 1549 - 1566
  • [8] Isolating individual trees in a savanna woodland using small footprint lidar data
    Qi, Chen
    Baldocchi, Dennis
    Gong, Peng
    Kelly, Maggi
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2006, 72 (08): : 923 - 932
  • [9] Individual tree identification using a new cluster-based approach with discrete-return airborne LiDAR data
    Liu, Haijian
    Dong, Pinliang
    Wu, Changshan
    Wang, Pin
    Fang, Meihong
    REMOTE SENSING OF ENVIRONMENT, 2021, 258
  • [10] Urban tree classification using discrete-return LiDAR and an object-level local binary pattern algorithm
    Azeez, Omer Saud
    Pradhan, Biswajeet
    Jena, Ratiranjan
    GEOCARTO INTERNATIONAL, 2021, 36 (16) : 1785 - 1803