Differential Evolution with Adaptive Repository of Strategies and Parameter Control Schemes

被引:0
|
作者
Al-Dabbagh, Rawaa Dawoud [1 ]
机构
[1] Univ Malaya, Dept Artificial Intelligence, Kuala Lumpur, Malaysia
关键词
Evolutionary Algorithms; Adaptive Evolutionary Algorithm; Parameter Adaptive Scheme; Mutation Startegy; OPTIMIZATION; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new Differential Evolution (ARDE) algorithm is introduced that automatically adapt a repository of DE strategies and parameters adaptation schemes of the mutation factor and the crossover rate to avoid the problems of stagnation and make DE responds to a wide range of function characteristics at different stages of the evolution. ARDE algorithm makes use of JADE strategy and the MDE_pBX parameters adaptive schemes as frameworks. Then a new adaptive procedure called adaptive repository (AR) has been developed to select the appropriate combinations of the JADE strategies and the parameter control schemes of the MDE_pBX to generate the next population based on their fitness values. Experimental results have been presented to confirm the reliability of the proposed ARDE over several existing adaptive DE variants. This comparison has been conducted in terms of the solution precision over twenty-one standard benchmark functions including CEC 2005 functions.
引用
收藏
页码:361 / 368
页数:8
相关论文
共 50 条
  • [1] An Adaptive Parameter Control for the Differential Evolution Algorithm
    Reynoso-Meza, Gilberto
    Sanchis, Javier
    Blasco, Xavier
    [J]. BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE, PT 1, 2009, 5517 : 375 - 382
  • [2] An Enhanced Adaptive Differential Evolution Algorithm With Multi-Mutation Schemes and Weighted Control Parameter Setting
    Tian, Mengnan
    Meng, Yanhui
    He, Xingshi
    Zhang, Qingqing
    Gao, Yanghan
    [J]. IEEE ACCESS, 2023, 11 : 98854 - 98874
  • [3] Parameter Optimization of Simple Adaptive Control via Differential Evolution
    Takagi, Taro
    Ito, Minoru
    Mizumoto, Ikuro
    [J]. 2017 6TH INTERNATIONAL SYMPOSIUM ON ADVANCED CONTROL OF INDUSTRIAL PROCESSES (ADCONIP), 2017, : 318 - 323
  • [4] Introducing a stochastic parameter control method to an adaptive differential evolution
    Kadota, Masaki
    Yasuda, Toshiyuki
    Matsumura, Yoshiyuki
    Ohkura, Kazuhiro
    [J]. IEEJ Transactions on Electronics, Information and Systems, 2015, 135 (09) : 1142 - 1148
  • [5] Adaptive Parameter Adjustment of Differential Evolution
    Ji, Ruren
    Tamura, Kenichi
    Yasuda, Keiichiro
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, : 3915 - 3920
  • [6] Self-Adaptive Differential Evolution Algorithm With Zoning Evolution of Control Parameters and Adaptive Mutation Strategies
    Fan, Qinqin
    Yan, Xuefeng
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) : 219 - 232
  • [7] Differential Evolution Improved with Adaptive Control Parameters and Double Mutation Strategies
    Liu, Jun
    Yin, Xiaoming
    Gu, Xingsheng
    [J]. THEORY, METHODOLOGY, TOOLS AND APPLICATIONS FOR MODELING AND SIMULATION OF COMPLEX SYSTEMS, PT I, 2016, 643 : 186 - 198
  • [8] Differential Evolution with Adaptive Mutation and Parameter Control Using Levy Probability Distribution
    He, Ren-Jie
    Yang, Zhen-Yu
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2012, 27 (05) : 1035 - 1055
  • [9] An improved self-adaptive control parameter of differential evolution for global optimization
    Jia, Liyuan
    Zhang, Chi
    [J]. International Journal of Digital Content Technology and its Applications, 2012, 6 (08) : 343 - 350
  • [10] Multi-population Differential Evolution with Adaptive Parameter Control for Global Optimization
    Yu, Wei-jie
    Zhang, Jun
    [J]. GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1093 - 1098