Weighted estimates for operator-valued Fourier multipliers

被引:11
|
作者
Fackler, Stephan [1 ]
Hytonen, Tuomas P. [2 ]
Lindemulder, Nick [3 ]
机构
[1] Ulm Univ, Inst Appl Anal, Helmholtzstr 18, D-89069 Ulm, Germany
[2] Univ Helsinki, Dept Math & Stat, POB 68,Pietari Kalinin Katu 5, Helsinki 00014, Finland
[3] Karlsruhe Inst Technol, Inst Anal, Englerstr 2, D-76131 Karlsruhe, Germany
关键词
Fourier multiplier; Fourier type; Hormander condition; Littlewood-Paley decomposition; Mikhlin condition; Muckenhoupt weights; Operator-valued symbol; Two-weight estimates; Vector-valued; UMD; MAXIMAL REGULARITY; NORM INEQUALITIES; THEOREMS; EQUATIONS; SPACES;
D O I
10.1007/s13348-019-00275-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish Littlewood-Paley decompositions for Muckenhoupt weights in the setting of UMD spaces. As a consequence we obtain two-weight variants of the Mikhlin multiplier theorem for operator-valued multipliers. We also show two-weight estimates for multipliers satisfying Hormander type conditions.
引用
收藏
页码:511 / 548
页数:38
相关论文
共 50 条