A FINITE ELEMENT METHOD FOR EXTENDED KDV EQUATIONS

被引:7
|
作者
Karczewska, Anna [1 ]
Rozmej, Piotr [2 ]
Szczecinski, Maciej [1 ]
Boguniewicz, Bartosz [2 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, Szafrana 4a, PL-65516 Zielona Gora, Poland
[2] Univ Zielona Gora, Fac Phys & Astron, Inst Phys, Szafrana 4a, PL-65516 Zielona Gora, Poland
关键词
shallow water wave problem; nonlinear equations; second order KdV equations; finite element method; Petrov-Galerkin method; SLOWLY VARYING BOTTOM; SOLITARY WAVE; RESONANT FLOW; UNIDIRECTIONAL WAVES; ENERGY-CONSERVATION; GALERKIN METHOD; WATER; DERIVATION; FLUID; EVOLUTION;
D O I
10.1515/amcs-2016-0039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The finite element method (FEM) is applied to obtain numerical solutions to a recently derived nonlinear equation for the shallow water wave problem. A weak formulation and the Petrov-Galerkin method are used. It is shown that the FEM gives a reasonable description of the wave dynamics of soliton waves governed by extended KdV equations. Some new results for several cases of bottom shapes are presented. The numerical scheme presented here is suitable for taking into account stochastic effects, which will be discussed in a subsequent paper.
引用
收藏
页码:555 / 567
页数:13
相关论文
共 50 条
  • [1] The finite element method for the coupled Schrodinger-KdV equations
    Bai, Dongmei
    Zhang, Luming
    PHYSICS LETTERS A, 2009, 373 (26) : 2237 - 2244
  • [2] A finite element method for the two-dimensional extended Boussinesq equations
    Walkley, M
    Berzins, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 39 (10) : 865 - 885
  • [3] A finite element method for the one-dimensional extended Boussinesq equations
    Walkley, M
    Berzins, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1999, 29 (02) : 143 - 157
  • [4] An extended finite element method for the Nernst-Planck-Poisson equations
    Kumar, Pawan
    Swaminathan, Narasimhan
    Natarajan, Sundararajan
    SOLID STATE IONICS, 2024, 410
  • [5] Extended Finite Element Method
    Fries, Thomas-Peter
    Zilian, Andreas
    Moes, Nicolas
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 86 (4-5) : 403 - 403
  • [6] Extended group finite element method
    Tolle, Kevin
    Marheineke, Nicole
    APPLIED NUMERICAL MATHEMATICS, 2021, 162 : 1 - 19
  • [7] An application for a modified KdV equation by the decomposition method and finite element method
    Geyikli, T
    Kaya, D
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (02) : 971 - 981
  • [8] A finite element method for parabolic equations
    Dahlgren, M
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2002, 2004, 5 : 253 - 258
  • [9] A new method for searching the enrichment element in extended finite element method
    Jiang, Xiaofang
    Huang, Zhenghong
    Luo, Rui
    Zuo, Hong
    Zheng, Xing
    Deng, Shouchun
    Deng, Shouchun (scdeng@whrsm.ac.cn), 1600, International Association of Engineers (50): : 519 - 533
  • [10] A Lumped Galerkin finite element method for the generalized Hirota-Satsuma coupled KdV and coupled MKdV equations
    Yagmurlu, Nuri Murat
    Karaagac, Berat
    Esen, Alaattin
    TBILISI MATHEMATICAL JOURNAL, 2019, 12 (03) : 159 - 173