ON THE GLOBAL WELL-POSEDNESS OF THE ONE-DIMENSIONAL SCHRODINGER MAP FLOW

被引:24
|
作者
Rodnianski, Igor [1 ]
Rubinstein, Yanir A. [2 ]
Staffilani, Gigliola [3 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
来源
ANALYSIS & PDE | 2009年 / 2卷 / 02期
基金
美国国家科学基金会;
关键词
Schrodinger flow; periodic NLS; cubic NLS; Strichartz estimates; Kahler manifolds; UNIQUENESS; CONNECTION; EXISTENCE; SYSTEM;
D O I
10.2140/apde.2009.2.187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the global well-posedness of the initial value problem for the Schrodinger map flow for maps from the real line into Kahler manifolds and for maps from the circle into Riemann surfaces. This partially resolves a conjecture of W.-Y. Ding.
引用
收藏
页码:187 / 209
页数:23
相关论文
共 50 条