Integrable many-body systems and gauge theories

被引:4
|
作者
Gorskii, AS [1 ]
机构
[1] Inst Theoret & Expt Phys, Moscow 117259, Russia
关键词
D O I
10.1007/BF02551040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the study of the relation between integrable many-body systems and gauge theories. We show that the degrees of freedom of integrable systems are related to the topological degrees of freedom of gauge theories. We also describe the relation between families of integrable systems and N=2 supersymmetric gauge theories. We show that the degrees of freedom of many-body systems can be identified with the collective coordinates of string theory solitons, the D-branes.
引用
收藏
页码:1305 / 1348
页数:44
相关论文
共 50 条
  • [1] Integrable many-body systems and gauge theories
    A. S. Gorskii
    Theoretical and Mathematical Physics, 2000, 125 : 1305 - 1348
  • [2] Integrable many-body systems in the field theories
    Gorsky, A
    THEORETICAL AND MATHEMATICAL PHYSICS, 1995, 103 (03) : 681 - 700
  • [3] Introduction to integrable many-body systems I
    Samaj, Ladislav
    ACTA PHYSICA SLOVACA, 2008, 58 (06) : 814 - 946
  • [4] INTRODUCTION TO INTEGRABLE MANY-BODY SYSTEMS III
    Bajnok, Zoltan
    Samaj, Ladislav
    ACTA PHYSICA SLOVACA, 2011, 61 (02) : 129 - 271
  • [5] THE BACKLUND TRANSFORMATION FOR THE INTEGRABLE MANY-BODY SYSTEMS
    WOJIECHOWSKI, S
    PHYSICA D, 1984, 11 (03): : 406 - 406
  • [6] INTRODUCTION TO INTEGRABLE MANY-BODY SYSTEMS II
    Samaj, Ladislav
    ACTA PHYSICA SLOVACA, 2010, 60 (02) : 155 - 257
  • [7] Spreading in integrable and non-integrable many-body systems
    Freese, Johannes
    Gutkin, Boris
    Guhr, Thomas
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 461 : 683 - 693
  • [8] Robust quantum many-body scars in lattice gauge theories
    Halimeh, Jad C.
    Barbiero, Luca
    Hauke, Philipp
    Grusdt, Fabian
    Bohrdt, Annabelle
    QUANTUM, 2023, 7
  • [9] Many-body integrable systems implied by WLZZ models
    Mironov, A.
    Morozov, A.
    PHYSICS LETTERS B, 2023, 842
  • [10] Integrable Many-Body Systems via the Inosemtsev Limit
    A. V. Zotov
    Yu. B. Chernyakov
    Theoretical and Mathematical Physics, 2001, 129 : 1526 - 1542