All versus nothing inseparability for 2n observers

被引:0
|
作者
Liang, LM [1 ]
Li, CZ [1 ]
机构
[1] Natl Univ Def Technol, Dept Appl Phys, Changsha 410073, Peoples R China
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an "all versus nothing" to show Bell's theorem without inequalities involving 2n observers. As a by-product, we also shows that quantum mechanics can violate Bell's inequality by a constant instead of by an amount that grows exponentially with 2n.
引用
收藏
页码:1666 / 1668
页数:3
相关论文
共 50 条
  • [1] All versus nothing inseparability for two observers
    Cabello, A
    PHYSICAL REVIEW LETTERS, 2001, 87 (01) : 1 - 010403
  • [2] All-versus-nothing inseparability for two pairs of entangled atoms
    Liang, LM
    Ou, BQ
    Chen, JM
    Li, CZ
    OPTICS COMMUNICATIONS, 2006, 260 (01) : 203 - 206
  • [3] FUZZINESS VERSUS ALL OR NOTHING
    STERN, RH
    IEEE MICRO, 1995, 15 (03) : 7 - &
  • [4] (2n, 2n, 2n, 1)-Relative Difference Sets and Their Representations
    Zhou, Yue
    JOURNAL OF COMBINATORIAL DESIGNS, 2013, 21 (12) : 563 - 584
  • [5] High Precision Multiplier for RNS {2n - 1, 2n, 2n
    Ma, Shang
    Hu, Shuai
    Yang, Zeguo
    Wang, Xuesi
    Liu, Meiqing
    Hu, Jianhao
    ELECTRONICS, 2021, 10 (09)
  • [6] On abelian (2n, n, 2n, 2)-difference sets
    Hiramine, Yutaka
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (07) : 996 - 1003
  • [7] All-versus-nothing proofs with n qubits distributed between m parties
    Cabello, Adan
    Moreno, Pilar
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [8] On (2n, 2, 2n, n) relative difference sets
    Hiramine, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 101 (02) : 281 - 284
  • [9] All-or-Nothing versus Proportionate Damages
    Leshem, Shmuel
    Miller, Geoffrey P.
    JOURNAL OF LEGAL STUDIES, 2009, 38 (02): : 345 - 382
  • [10] Bordism Classes of Involutions on RP(2n)、CP(2n) and HP(2n)
    孟召静
    王彦英
    数学季刊, 1999, (02) : 33 - 37