Reduction principle for a certain class of kernel-type operators

被引:6
|
作者
Pesa, Dalimil [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
down-dual norm; Hardy-Littlewood inequality; kernel operator; rearrangement-invariant norms; EMBEDDINGS;
D O I
10.1002/mana.201800510
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical Hardy-Littlewood inequality asserts that the integral of a product of two functions is always majorized by that of their non-increasing rearrangements. One of the pivotal applications of this result is the fact that the boundedness of an integral operator acting near zero is equivalent to the boundedness of the same operator restricted to the cone of positive non-increasing functions. It is well known that an analogous inequality for integration away from zero is not true. We will show in this paper that, nevertheless, the equivalence of the two inequalities is still preserved for certain rather general class of kernel-type operators under a mild restriction and regardless of the measure of the underlying integration domain.
引用
收藏
页码:761 / 773
页数:13
相关论文
共 50 条
  • [1] On boundedness and compactness of a certain class of kernel operators
    Ushakova, Elena P.
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2011, 9 (01): : 67 - 107
  • [2] Universal weighted kernel-type estimators for some class of regression models
    Igor S. Borisov
    Yuliana Yu. Linke
    Pavel S. Ruzankin
    Metrika, 2021, 84 : 141 - 166
  • [3] Universal weighted kernel-type estimators for some class of regression models
    Borisov, Igor S.
    Linke, Yuliana Yu.
    Ruzankin, Pavel S.
    METRIKA, 2021, 84 (02) : 141 - 166
  • [4] A KERNEL-TYPE ESTIMATOR FOR GENERALIZED QUANTILES
    VERAVERBEKE, N
    STATISTICS & PROBABILITY LETTERS, 1987, 5 (03) : 175 - 180
  • [5] A survey of kernel-type estimators for copula and their applications
    Sumarjaya, I. W.
    ASIAN MATHEMATICAL CONFERENCE 2016 (AMC 2016), 2017, 893
  • [6] Asymptotic normality of kernel-type deconvolution estimators
    van Es, B
    Uh, HW
    SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (03) : 467 - 483
  • [7] KERNEL-TYPE COMPACTNESS CRITERIA IN LPE SPACES
    CREMERS, H
    KADELKA, D
    MATHEMATISCHE ZEITSCHRIFT, 1984, 186 (01) : 67 - 80
  • [8] Universal kernel-type estimation of random fields
    Linke, Y. Y.
    Borisov, I. S.
    Ruzankin, P. S.
    STATISTICS, 2023, 57 (04) : 785 - 810
  • [9] Large deviations for kernel-type empirical distributions
    Shikimi, T
    STATISTICS & PROBABILITY LETTERS, 2002, 59 (01) : 23 - 28
  • [10] Universal kernel-type estimation of random fields ∗
    Linke, Yu.Yu.
    Borisov, I.S.
    Ruzankin, P.S.
    arXiv, 2023,