Charged quantum dot micropillar system for deterministic light-matter interactions

被引:37
|
作者
Androvitsaneas, P. [1 ]
Young, A. B. [2 ]
Schneider, C. [3 ,4 ]
Maier, S. [3 ,4 ]
Kamp, M. [3 ,4 ]
Hoefling, S. [3 ,4 ,5 ]
Knauer, S. [1 ,2 ]
Harbord, E. [1 ]
Hu, C. Y. [2 ]
Rarity, J. G. [2 ]
Oulton, R. [1 ,2 ]
机构
[1] Univ Bristol, Ctr Quantum Photon, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England
[2] Univ Bristol, Dept Elect & Elect Engn, Merchant Venturers Bldg,Woodland Rd, Bristol BS8 1UB, Avon, England
[3] Univ Wurzburg, Inst Phys, Tech Phys, Hubland, D-97474 Wurzburg, Germany
[4] Univ Wurzburg, Wilhelm Conrad Rontgen Ctr Complex Mat Syst, Hubland, D-97474 Wurzburg, Germany
[5] Univ St Andrews, Dept Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland
基金
英国工程与自然科学研究理事会;
关键词
SINGLE-PHOTON SOURCES; SPONTANEOUS-EMISSION; ELECTRON-SPIN; MICROCAVITY;
D O I
10.1103/PhysRevB.93.241409
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as cavities or waveguides that enhance the light-matter interaction. A near unit efficiency light-matter interaction is essential for deterministic, scalable quantum-information (QI) devices. In this limit, a single photon input into the device will undergo a large rotation of the polarization of the light field due to the strong interaction with the QD. In this paper we measure a macroscopic (similar to 6 degrees) phase shift of light as a result of the interaction with a negatively charged QD coupled to a low-quality-factor (Q similar to 290) pillar microcavity. This unexpectedly large rotation angle demonstrates that this simple low-Q-factor design would enable near-deterministic light-matter interactions.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Deterministic assembly of a charged-quantum-dot-micropillar cavity device
    Hilaire, P.
    Millet, C.
    Loredo, J. C.
    Anton, C.
    Harouri, A.
    Lemaitre, A.
    Sagnes, I
    Somaschi, N.
    Krebs, O.
    Senellart, P.
    Lanco, L.
    [J]. PHYSICAL REVIEW B, 2020, 102 (19)
  • [2] Quantum light-matter interactions in structured waveguides
    Bag, Rupak
    Roy, Dibyendu
    [J]. PHYSICAL REVIEW A, 2023, 108 (05)
  • [3] Light-matter interactions in quantum nanophotonic devices
    Gonzalez-Tudela, Alejandro
    Reiserer, Andreas
    Garcia-Ripoll, Juan Jose
    Garcia-Vidal, Francisco J.
    [J]. NATURE REVIEWS PHYSICS, 2024, 6 (03) : 166 - 179
  • [4] Probing light-matter interactions at the nanoscale with a deterministically-positioned single quantum dot
    Ropp, Chad
    Cummins, Zachary
    Probst, Roland
    Qin, Sijia
    Fourkas, John T.
    Shapiro, Benjamin
    Waks, Edo
    [J]. QUANTUM DOTS AND NANOSTRUCTURES: SYNTHESIS, CHARACTERIZATION, AND MODELING X, 2013, 8634
  • [5] Light-matter interactions in the coupling system of quantum emitter and hyperbolic nanorod
    Guo, Chao
    You, Jia-Bin
    Chen, Zhanxu
    Zhang, Wenbo
    Zhao, Qian
    Zhou, Zhang-Kai
    [J]. APPLIED PHYSICS LETTERS, 2021, 118 (22)
  • [6] Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system
    Van Vlack, C.
    Kristensen, Philip Trost
    Hughes, S.
    [J]. PHYSICAL REVIEW B, 2012, 85 (07):
  • [7] Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars
    Liu, Shunfa
    Wei, Yuming
    Li, Xueshi
    Yu, Ying
    Liu, Jin
    Yu, Siyuan
    Wang, Xuehua
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)
  • [8] Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars
    Shunfa Liu
    Yuming Wei
    Xueshi Li
    Ying Yu
    Jin Liu
    Siyuan Yu
    Xuehua Wang
    [J]. Light: Science & Applications, 10
  • [9] Continuous quantum measurement of a light-matter system
    Zhao, R.
    Jenkins, S. D.
    Campbell, C. J.
    Matsukevich, D. N.
    Chaneliere, T.
    Kennedy, T. A. B.
    Kuzmich, A.
    [J]. PHYSICAL REVIEW A, 2010, 81 (03):
  • [10] FDTD Modelling of Optical Polarisation Rotation in a Charged Quantum Dot - Micropillar System
    Slavcheva, G.
    Koleva, M.
    Rastelli, A.
    [J]. 2019 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2019,