Eigenstate entanglement between quantum chaotic subsystems: Universal transitions and power laws in the entanglement spectrum

被引:14
|
作者
Tomsovic, Steven [1 ,2 ,3 ,4 ]
Lakshminarayan, Arul [1 ,5 ]
Srivastava, Shashi C. L. [1 ,6 ,7 ]
Baecker, Arnd [1 ,2 ,3 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[2] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
[3] Tech Univ Dresden, Ctr Dynam, D-01062 Dresden, Germany
[4] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA
[5] Indian Inst Technol Madras, Dept Phys, Madras 600036, Tamil Nadu, India
[6] Variable Energy Cyclotron Ctr, 1-AF Bidhannagar, Kolkata 700064, India
[7] Homi Bhabha Natl Inst, Training Sch Complex, Bombay 400085, Maharashtra, India
关键词
MANY-PARTICLE SPECTRA; STATISTICAL PROPERTIES; PARAMETRIC CORRELATIONS; AVERAGE ENTROPY; FLUCTUATIONS; CONDUCTANCE; EIGENFUNCTIONS; THERMALIZATION; DECOHERENCE; LOCALIZATION;
D O I
10.1103/PhysRevE.98.032209
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive universal entanglement entropy and Schmidt eigenvalue behaviors for the eigenstates of two quantum chaotic systems coupled with a weak interaction. The progression from a lack of entanglement in the noninteracting limit to the entanglement expected of fully randomized states in the opposite limit is governed by the single scaling transition parameter Lambda. The behaviors apply equally well to few- and many-body systems, e.g., interacting particles in quantum dots, spin chains, coupled quantum maps, and Floquet systems, as long as their subsystems are quantum chaotic and not localized in some manner. To calculate the generalized moments of the Schmidt eigenvalues in the perturbative regime, a regularized theory is applied, whose leading-order behaviors depend on root Lambda. The marginal case of the 1/2 moment, which is related to the distance to the closest maximally entangled state, is an exception having a root Lambda ln Lambda leading order and a logarithmic dependence on subsystem size. A recursive embedding of the regularized perturbation theory gives a simple exponential behavior for the von Neumann entropy and the Havrda-Charvat-Tsallis entropies for increasing interaction strength, demonstrating a universal transition to nearly maximal entanglement. Moreover, the full probability densities of the Schmidt eigenvalues, i.e., the entanglement spectrum, show a transition from power laws and Levy distribution in the weakly interacting regime to random matrix results for the strongly interacting regime. The predicted behaviors are tested on a pair of weakly interacting kicked rotors, which follow the universal behaviors extremely well.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Universal eigenstate entanglement of chaotic local Hamiltonians
    Huang, Yichen
    [J]. NUCLEAR PHYSICS B, 2019, 938 : 594 - 604
  • [2] Entanglement production by interaction quenches of quantum chaotic subsystems
    Pulikkottil, Jethin J.
    Lakshminarayan, Arul
    Srivastava, Shashi C. L.
    Baecker, Arnd
    Tomsovic, Steven
    [J]. PHYSICAL REVIEW E, 2020, 101 (03)
  • [3] Quantum information or entanglement transfer between subsystems
    Giddings, Steven B.
    Rota, Massimiliano
    [J]. PHYSICAL REVIEW A, 2018, 98 (06)
  • [4] Universal geometric entanglement close to quantum phase transitions
    Orus, Roman
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (13)
  • [5] On entanglement of quantum states of noninteracting subsystems
    A. M. Basharov
    É. A. Manykin
    [J]. Optics and Spectroscopy, 2004, 96 : 81 - 85
  • [6] On entanglement of quantum states of noninteracting subsystems
    Basharov, AM
    Manykin, ÉA
    [J]. OPTICS AND SPECTROSCOPY, 2004, 96 (01) : 81 - 85
  • [7] Scaling of the entanglement spectrum near quantum phase transitions
    Lepori, L.
    De Chiara, G.
    Sanpera, A.
    [J]. PHYSICAL REVIEW B, 2013, 87 (23)
  • [8] Eigenstate Entanglement: Crossover from the Ground State to Volume Laws
    Miao, Qiang
    Barthel, Thomas
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (04)
  • [9] Universal entanglement of mid-spectrum eigenstates of chaotic local Hamiltonians
    Huang, Yichen
    [J]. NUCLEAR PHYSICS B, 2021, 966
  • [10] How Universal Is the Entanglement Spectrum?
    Chandran, Anushya
    Khemani, Vedika
    Sondhi, S. L.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (06)