A Property of Isometric Mappings Between Dual Polar Spaces of Type DQ(2n, K)

被引:0
|
作者
De Bruyn, Bart [1 ]
机构
[1] Univ Ghent, Dept Math, B-9000 Ghent, Belgium
关键词
isometric embedding; dual polar space; hyperplane; spin-embedding; SPIN-EMBEDDINGS; HYPERPLANES;
D O I
10.1007/s00026-010-0061-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be an isometric embedding of the dual polar space Delta = DQ(2n, K) into Delta' = DQ(2n, K'). Let P denote the point-set of Delta and let e' : Delta' -> Sigma' congruent to PG(2(n) - 1, K') denote the spin-embedding of Delta'. We show that for every locally singular hyperplane H of Delta, there exists a unique locally singular hyperplane H' of Delta' such that f(H) = f(P) boolean AND H'. We use this to show that there exists a subgeometry Sigma congruent to PG(2(n) - 1, K) of Sigma' such that: (i) e' circle f (x) is an element of Sigma for every point x of Delta; (ii) e := e' circle f defines a full embedding of Delta into Sigma, which is isomorphic to the spin-embedding of Delta.
引用
收藏
页码:307 / 318
页数:12
相关论文
共 43 条