Thermodynamic analysis of SiC polytype growth by physical vapor transport method

被引:24
|
作者
Kakimoto, K. [1 ]
Gao, B. [1 ]
Shiramomo, T. [1 ]
Nakano, S. [1 ]
Nishizawa, Shi-ichi [2 ]
机构
[1] Kyushu Univ, Appl Mech Res Inst, Fukuoka 8168580, Japan
[2] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan
关键词
Computer simulation; Heat transfer; Substrate; Growth from vapor; SUBLIMATION GROWTH; BULK CRYSTALS; INCREASE;
D O I
10.1016/j.jcrysgro.2011.03.059
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Crystal growth of a certain polytype of SiC in a process of physical vapor transport was studied on the basis of classical thermodynamic nucleation theory in conjunction with numerical results obtained from a global model. Formation of a certain polytype in the nucleation stage is determined by the energy balance among surface energy, formation energy and supersaturation. The preferential growth condition of a certain polytype was estimated. The value of supersaturation was estimated using a numerical model obtained by a global model that includes species transport as well as heat transport in a furnace. The results of calculation showed that 4H polytype is more stable than 15R, 6H and 3C polytypes. Free energy difference between 4H and 6H polytypes decreased when total pressure in the furnace decreased. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 81
页数:4
相关论文
共 50 条
  • [1] Analysis of growth velocity of SiC growth by the physical vapor transport method
    Kakimotota, Koichi
    Gao, Bing
    Shiramomo, Takuya
    Nakano, Satoshi
    Nishizawa, Shin-ichi
    SILICON CARBIDE AND RELATED MATERIALS 2011, PTS 1 AND 2, 2012, 717-720 : 25 - +
  • [2] Physical Vapor Transport Growth and Properties of SiC Monocrystals of 4H Polytype
    Augustine, G.
    McD. Hobgood, H.
    Balakrishna, V.
    Dunne, G.
    Physica Status Solidi (B): Basic Research, 202 (01):
  • [3] Physical vapor transport growth and properties of SiC monocrystals of 4H polytype
    Augustine, G
    Hobgood, HM
    Balakrishna, V
    Dunne, G
    Hopkins, RH
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1997, 202 (01): : 137 - 148
  • [4] THERMODYNAMIC ANALYSIS OF UREA PHYSICAL VAPOR TRANSPORT
    PAORICI, C
    ZHA, M
    ZANOTTI, L
    ATTOLINI, G
    TRALDI, P
    CATINELLA, S
    CRYSTAL RESEARCH AND TECHNOLOGY, 1995, 30 (05) : 667 - 675
  • [5] Effect of cerium impurity on the stable growth of the 4H-SiC polytype by the physical vapour transport method
    Racka-Szmidt K.
    Tymicki E.
    Raczkiewicz M.
    Sar J.
    Wejrzanowski T.
    Grasza K.
    Journal of Crystal Growth, 2022, 586
  • [6] An inserted epitaxial layer for SiC single crystal growth by the physical vapor transport method
    Seo, Jung-Doo
    An, Joon-Ho
    Kim, Jung-Gon
    Kim, Jung-Kyu
    Kyun, Myung-Ok
    Lee, Won-Jae
    Kim, Il-Soo
    Shin, Byoung-Chul
    Ku, Kap-Ryeol
    SILICON CARBIDE AND RELATED MATERIALS 2006, 2007, 556-557 : 9 - +
  • [7] Seed Polarity Dependence of SiC SingleCrystal Growth by Using a Physical Vapor Transport Method
    Kim, Jung-Gon
    Son, Chang-Hyun
    Choi, Jung-Woo
    Kim, Jung-Kyu
    Lee, Won-Jae
    Shin, Byoung-Chul
    Kim, Il-Soo
    Nishino, S.
    Seo, Jung-Doo
    Ku, Kap-Ryeol
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 54 (05) : 1834 - 1839
  • [8] MODEL FOR GROWTH OF ANOMALOUS POLYTYPE STRUCTURES IN VAPOR GROWN SIC
    PANDEY, D
    KRISHNA, P
    JOURNAL OF CRYSTAL GROWTH, 1975, 31 (DEC) : 66 - 71
  • [9] Defect Reduction in SiC Growth Using Physical Vapor Transport
    Hansen, Darren M.
    Loboda, Mark J.
    Drachev, Roman V.
    Sanchez, Edward K.
    Zhang, Jie
    Carlson, Eric P.
    Wan, Jianwei
    Chung, Gil
    B - SILICON CARBIDE 2010-MATERIALS, PROCESSING AND DEVICES, 2010, 1246
  • [10] In situ visualization of SiC physical vapor transport crystal growth
    Wellmann, Peter
    Herro, Ziad
    Winnacker, Albrecht
    Puesche, Roland
    Hundhausen, Martin
    Masri, Pierre
    Kulik, Alexey
    Bogdanov, Maxim
    Karpov, Sergey
    Ramm, Mark
    Makarov, Yuri
    JOURNAL OF CRYSTAL GROWTH, 2005, 275 (1-2) : E1807 - E1812