Estimation of the beach bar parameters using the genetic algorithms

被引:10
|
作者
Koemuercue, Murat Ihsan [2 ]
Tutkun, Nedim [3 ]
Oezoelcer, Ismail Hakki [1 ]
Akpmar, Adem [2 ]
机构
[1] Zonguldak Karaelmas Univ, Dept Civil Engn, TR-67100 Zonguldak, Turkey
[2] Karadeniz Tech Univ, Dept Civil Engn, TR-61080 Trabzon, Turkey
[3] Zonguldak Karaelmas Univ, Elect Elect Engn Dept, TR-67100 Zonguldak, Turkey
关键词
cross-shore transport; coastal profiles; storm-built profiles; bar characteristics; genetic algorithms;
D O I
10.1016/j.amc.2007.04.069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Waves, topographic characteristics and material properties are the most significant factors, which affect the sediment movement and coastal profiles. In this study, considering the wave height (H-0) and period (T), the bed slope (in) and the sediment diameter (d(50)), the cross-shore sediment movement is investigated using a physical model and obtained 80 experimental data for offshore bar geometric parameters. The experimental results are also evaluated by the genetic algorithms (GAs) that are limitedly employed in coastal engineering applications. The results of GAs model and equations cited in the literature are compared with the experimental results. It is concluded that estimates of bar parameters by the GAs give a better estimation performance with respect to other conventional methods. (c) 2007 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:49 / 60
页数:12
相关论文
共 50 条
  • [1] Estimation of multilayer soil parameters using genetic algorithms
    Gonos, IF
    Stathopulos, IA
    IEEE TRANSACTIONS ON POWER DELIVERY, 2005, 20 (01) : 100 - 106
  • [2] Estimation of multi-layer soil parameters using genetic algorithms
    Gonos, L
    Stathopulos, I
    2004 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1 AND 2, 2004, : 1037 - 1037
  • [3] Rapid Estimation of Earthquake Magnitude and Source Parameters Using Genetic Algorithms
    Novianty, Astri
    Meilano, Irwan
    Machbub, Carmadi
    Widiyantoro, Sri
    Susilo, Susilo
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [4] Simplified Thermal Parameters Estimation in Residential Buildings Using Genetic Algorithms
    Devia, William
    Cardenas, Alben
    Agbossou, Kodjo
    Lavigne, Karine
    45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 2566 - 2571
  • [5] Model parameters estimation and sensitivity by genetic algorithms
    Marseguerra, M
    Zio, E
    Podofillini, L
    ANNALS OF NUCLEAR ENERGY, 2003, 30 (14) : 1437 - 1456
  • [6] Estimation of unconfined aquifer parameters by genetic algorithms
    Rajesh, M.
    Kashyap, D.
    Prasad, K. S. Hari
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2010, 55 (03): : 403 - 413
  • [7] Induction motor parameters and temperature estimation using catalogue data and genetic algorithms
    Andonov, Zdravko
    Jeftenic, Borislav I.
    Mircevski, Slobodan A.
    INTERNATIONAL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS & ELECTROMOTION, PROCEEDINGS, 2007, : 836 - 839
  • [8] Kinetic parameters estimation for precipitation using continuous approximation functions and genetic algorithms
    Isopescu, Raluca
    Lavric, Vasile
    PRES'09: 12TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, PTS 1 AND 2, 2009, 18 : 719 - 724
  • [9] 9 Parameters Estimation of an Extended Induction Machine Model Using Genetic Algorithms
    Maitre, Julien
    Bouchard, Bruno
    Bouzouane, Abdenour
    Gaboury, Sebastien
    2015 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), 2015, : 608 - 612
  • [10] Using genetic algorithms to parameters (d,r) estimation for threshold autoregressive models
    Wu, B
    Chang, CL
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 38 (03) : 315 - 330