The blow-up analysis of an affine Toda system corresponding to superconformal minimal surfaces in S4

被引:2
|
作者
Liu, Lei [1 ,2 ]
Wang, Guofang [3 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[3] Albert Ludwigs Univ Freiburg, Math Inst, Ernst Zermelo Str 1, D-79104 Freiburg, Germany
关键词
Liouville equation; Open and affine Toda system; Blow up; Global Pohozaev identity; SCALAR CURVATURE EQUATION; ANALYTIC ASPECTS; CLASSIFICATION; EXISTENCE; IMMERSIONS; BEHAVIOR; LIMITS;
D O I
10.1016/j.jfa.2021.109194
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the blow-up analysis of an affine Toda system corresponding to minimal surfaces into S-4. This system is an integrable system which is a natural generalization of sinh-Gordon equation. By exploring a refined blow-up analysis in the bubble domain, we prove that the blow-up values are multiple of 8p, which generalizes the previous results proved in [39,37,27,22] for the sinh-Gordon equation. More precisely, let (u(k)(1), u(k)(2), u(k)(3)) be a sequence of solutions of -Delta u(1) = e(u1) - e(u3), -Delta u(2) = e(u2) - e(u3), -Delta u(3) = - 1/2 e(u1) - 1/2 e(u2) + e(u3), u(1) + u(2) + 2u(3) = 0, in B-1(0), which has a uniformly bounded energy in B-1(0), a uniformly bounded oscillation on partial derivative B-1(0) and blows up at an isolated blow-up point {0}, then the local masses (sigma(1), sigma(2), sigma(3)) not equal 0 satisfy sigma(1) = m(1)( m(1) + 3)+ m(2)( m(2) - 1) sigma(2) = m(1)( m(1) - 1) + m(2)( m(2) + 3) sigma(3) = m(1)( m(1) - 1) + m(2)( m(2) - 1) is an element of Z either for some m1, m2 = 0, 1 mod4, or m1, m2 = 2, 3 mod4. Here sigma(i):= 1/2 pi lim(delta -> 0) lim(k ->infinity) integral(Bd)(0)e(u)i(k)dx. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] Blow-up analysis for SU(3) Toda system
    Ohtsuka, Hiroshi
    Suzuki, Takashi
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) : 419 - 440
  • [2] The Blow-Up Analysis on B2(1) Affine Toda System: Local Mass and Affine Weyl Group
    Cui, Leilei
    Wei, Jun-cheng
    Yang, Wen
    Zhang, Lei
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (18) : 16140 - 16199
  • [3] Asymmetric blow-up for the SU(3) Toda system
    D'Aprile, Teresa
    Pistoia, Angela
    Ruiz, David
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (03) : 495 - 531
  • [4] Blow-up Analysis of a Parabolic System
    Ling Zhengqiu
    Qin Siqian
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [5] New blow-up phenomena for SU(n+1) Toda system
    Musso, Monica
    Pistoia, Angela
    Wei, Juncheng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (07) : 6232 - 6266
  • [6] A continuum of solutions for the SU(3) Toda System exhibiting partial blow-up
    D'Aprile, Teresa
    Pistoia, Angela
    Ruiz, David
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 111 : 797 - 830
  • [7] Uniqueness of minimal blow-up solutions to nonlinear Schrodinger system
    Su, Yiming
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 155 : 186 - 197
  • [8] Blow-up of Oskolkov's system of equations
    Korpusov, M. O.
    Sveshnikov, A. G.
    [J]. SBORNIK MATHEMATICS, 2009, 200 (3-4) : 549 - 572
  • [9] Blow-up analysis for a nonlinear diffusion system
    Xianfa Song
    Sining Zheng
    Zhaoxin Jiang
    [J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 2005, 56 : 1 - 10
  • [10] Blow-up analysis for a nonlinear diffusion system
    Song, XF
    Zheng, SN
    Jiang, ZX
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (01): : 1 - 10