Optimistic Multi-granulation Rough Set-Based Classification for Neonatal Jaundice Diagnosis

被引:6
|
作者
Kumar, S. Senthil [1 ]
Inbarani, H. Hannah [1 ]
Azar, Ahmad Taher [2 ]
Own, Hala S. [3 ]
Balas, Valentina Emilia [4 ]
Olariu, Teodora [5 ]
机构
[1] Periyar Univ, Dept Comp Sci, Salem 636011, India
[2] Benha Univ, Fac Comp & Informat, Banha, Egypt
[3] Natl Res Inst Astron & Geophys, Helwan, Egypt
[4] Aurel Vlaicu Univ Arad, Arad, Romania
[5] Vasile Goldis West Univ Arad, Satu Mare, Romania
关键词
Rough set; Optimistic multi-granulation rough set; Neonatal jaundice data; Classification; Comparative analysis of classification measures;
D O I
10.1007/978-3-319-18296-4_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neonatal jaundice diagnosis has been approached by various machine learning techniques. Pattern recognition algorithms are capable of improving the quality of prediction, early diagnosis of diseases, and disease classification. Pattern recognition algorithm results in Neonatal jaundice diagnosis or description of jaundice treatment by the medical specialist. This research focuses on applying rough set-based data mining techniques for Neonatal jaundice data to discover locally frequent identification of jaundice diseases. This work applies Optimistic Multi-granulation rough set model (OMGRS) for Neonatal jaundice data classification. Multi-granulation rough set provides efficient results than single granulation rough set model and soft rough set-based classifier model. The performance of the proposed Multi-granulation rough set-based classification is compared with other Naive bayes, Back Propagation Neural Networks (BPN), and Kth Nearest Neighbor (KNN) approaches using various classification measures.
引用
收藏
页码:307 / 317
页数:11
相关论文
共 50 条
  • [1] Optimistic Multi-Granulation Rough set based Classification for Medical Diagnosis
    Kumar, S. Senthil
    Inbarani, H. Hannah
    [J]. GRAPH ALGORITHMS, HIGH PERFORMANCE IMPLEMENTATIONS AND ITS APPLICATIONS (ICGHIA 2014), 2015, 47 : 374 - 382
  • [2] Pessimistic multi-granulation rough set-based classification for heart valve disease diagnosis
    Azar, Ahmad Taher
    Kumar, S. Senthil
    Inbarani, H. Hannah
    Hassanien, Aboul Ella
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2016, 26 (01) : 42 - 51
  • [3] Optimistic multi-granulation fuzzy rough set model in ordered information system
    Xu, Weihua
    Sun, Wenxin
    Liu, Yufeng
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC 2012), 2012, : 563 - 568
  • [4] MGRS: A multi-granulation rough set
    Qian, Yuhua
    Liang, Jiye
    Yao, Yiyu
    Dang, Chuangyin
    [J]. INFORMATION SCIENCES, 2010, 180 (06) : 949 - 970
  • [5] Cardiac arrhythmia classification using multi-granulation rough set approaches
    S. Senthil Kumar
    H. Hannah Inbarani
    [J]. International Journal of Machine Learning and Cybernetics, 2018, 9 : 651 - 666
  • [6] Variable Precision Multi-granulation Rough Set
    Wei, Wei
    Liang, Jiye
    Qian, Yuhua
    Wang, Feng
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC 2012), 2012, : 536 - 540
  • [7] Cardiac arrhythmia classification using multi-granulation rough set approaches
    Senthil Kumar, S.
    Hannah Inbarani, H.
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (04) : 651 - 666
  • [8] Multi-granulation Probabilistic Rough Set Model
    Lv, Yuejin
    Chen, Qingmei
    Wu, Lisha
    [J]. 2013 10TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2013, : 146 - 151
  • [9] A Generalized Multi-granulation Rough Set Approach
    Xu, Weihua
    Zhang, Xiantao
    Wang, Qiaorong
    [J]. BIO-INSPIRED COMPUTING AND APPLICATIONS, 2012, 6840 : 681 - 689
  • [10] Optimistic Multi-granulation Fuzzy Rough Sets on Tolerance Relations
    Xu Weihua
    Wang Qiaorong
    Luo Shuqun
    [J]. 2012 INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING (ISISE), 2012, : 299 - 302