Krull dimension of Malcev-Neumann rings

被引:7
|
作者
Sonin, C [1 ]
机构
[1] Moscow State Univ, Dept Algebra, Moscow 119899, Russia
关键词
D O I
10.1080/00927879808826317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that if R is a right noetherian ring, then the corresponding Malcev-Neumann ring R * ((G)) is right noetherian and r.K.dim(R) = r.K.dim(R * ((G))). We prove that the right noetherianness is a necessary condition for a Malcev-Neuman ring to have right Krull dimension. Also, we consider uniform dimension of Malcev-Neumann rings. The results obtained are applied to some other ring constructions.
引用
收藏
页码:2915 / 2931
页数:17
相关论文
共 50 条
  • [1] MALCEV-NEUMANN GROUP-RINGS
    MUSSON, IM
    STAFFORD, K
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (06) : 2065 - 2075
  • [2] Some Results of Malcev-Neumann Rings
    Alnefaie, Kholood
    Ali, Eltiyeb
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22
  • [3] Weak Annihilator Property of Malcev-Neumann Rings
    Ouyang Lunqun
    Liu Jinwang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (02) : 351 - 362
  • [4] FREE FIELDS IN MALCEV-NEUMANN SERIES RINGS
    Ferreira, Vitor O.
    Fornaroli, Erica Z.
    Sanchez, Javier
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (03) : 1149 - 1168
  • [5] Triangular Matrix Representations of Malcev-Neumann Rings
    Zhao, R. Y.
    Liu, Z. K.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2009, 33 (05) : 1013 - 1021
  • [6] On some properties of Malcev-Neumann modules
    Zhao, Renyu
    Liu, Zhonckui
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (03) : 445 - 456
  • [7] A residue theorem for Malcev-Neumann series
    Xin, GC
    ADVANCES IN APPLIED MATHEMATICS, 2005, 35 (03) : 271 - 293
  • [8] ZIP PROPERTY ON MALCEV-NEUMANN SERIES MODULES
    Salem, R.
    Radwan, A. E.
    Abd-Elmalk, H.
    MATEMATICHE, 2015, 70 (01): : 115 - 123
  • [9] DECOMPOSITION OF MALCEV-NEUMANN DIVISION-ALGEBRAS WITH INVOLUTION
    DHERTE, H
    MATHEMATISCHE ZEITSCHRIFT, 1994, 216 (04) : 629 - 644
  • [10] MALCEV-NEUMANN SERIES ON THE FREE GROUP AND QUESTIONS OF RATIONALITY
    CAUCHON, G
    THEORETICAL COMPUTER SCIENCE, 1992, 98 (01) : 79 - 97