Superpixel-guided multiscale kernel collaborative representation for hyperspectral image classification

被引:8
|
作者
Liu, Jianjun [1 ,2 ]
Xiao, Zhiyong [1 ]
Xiao, Liang [2 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Wuxi, Peoples R China
[2] Nanjing Univ Sci & Technol, Key Lab Intelligent Percept & Syst High Dimens In, Minist Educ, Nanjing, Jiangsu, Peoples R China
关键词
SPARSE REPRESENTATION;
D O I
10.1080/2150704X.2016.1207257
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This article presents a superpixel-guided multiscale kernel collaborative representation method for robust classification of hyperspectral images. This novel method first exploits the spatial multiscale information of hyperspectral images by extending a superpixel segmentation algorithm, and then proposes a spatial-spectral information fusion technique to encode the spatial multiscale similarities and the spectral similarities between the pixels in the framework of kernel collaborative representation classification. The advantages of it mainly consist in (1) avoiding choosing empirical parameters in the spatial feature extraction process of superpixels and (2) enhanced classification accuracy as compared to traditional spatial-spectral kernel techniques. Experimental results with two widely used hyperspectral images demonstrate the effectiveness of the proposed method.
引用
收藏
页码:975 / 984
页数:10
相关论文
共 50 条
  • [1] Collaborative Representation-Based Multiscale Superpixel Fusion for Hyperspectral Image Classification
    Jia, Sen
    Deng, Xianglong
    Zhu, Jiasong
    Xu, Meng
    Zhou, Jun
    Jia, Xiuping
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 7770 - 7784
  • [2] Superpixel-Guided Discriminative Low-Rank Representation of Hyperspectral Images for Classification
    Yang, Shujun
    Hou, Junhui
    Jia, Yuheng
    Mei, Shaohui
    Du, Qian
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 8823 - 8835
  • [3] Multi-Scale Superpixel-Guided Structural Profiles for Hyperspectral Image Classification
    Wang, Nanlan
    Zeng, Xiaoyong
    Duan, Yanjun
    Deng, Bin
    Mo, Yan
    Xie, Zhuojun
    Duan, Puhong
    [J]. SENSORS, 2022, 22 (21)
  • [4] Superpixel-guided multifeature tensor for hyperspectral image classification with limited training samples
    Wang, Peng
    Zheng, Chengyong
    Liu, Saihua
    [J]. OPTICS AND LASER TECHNOLOGY, 2023, 159
  • [5] Superpixel-guided multifeature tensor for hyperspectral image classification with limited training samples
    Wang, Peng
    Zheng, Chengyong
    Liu, Saihua
    [J]. OPTICS AND LASER TECHNOLOGY, 2023, 159
  • [6] Multistage Superpixel-Guided Hyperspectral Image Classification With Sparse Graph Attention Networks
    Li, Weiming
    Liu, Qikang
    Fan, Shuaishuai
    Bai, Hongyang
    Xin, Mingrui
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [7] Superpixel-Guided Variable Gabor Phase Coding Fusion for Hyperspectral Image Classification
    Zhang, Shuyu
    Tang, Dingding
    Li, Nanying
    Jia, Xiuping
    Jia, Sen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] A MULTISCALE SUPERPIXEL-GUIDED FILTER APPROACH FOR VHR REMOTE SENSING IMAGE CLASSIFICATION
    Liu, Sicong
    Hu, Qing
    Samat, Alim
    Tong, Xiaohua
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1017 - 1020
  • [9] Multiscale Superpixel Kernel-Based Low-Rank Representation for Hyperspectral Image Classification
    Zhan, Tianming
    Lu, Zhenyu
    Wan, Minghua
    Yang, Guowei
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (09) : 1642 - 1646
  • [10] Superpixel-guided locality preserving projection and spatial-spectral classification for hyperspectral image
    Song, Hailong
    Zhang, Shuzhen
    [J]. ELECTRONICS LETTERS, 2024, 60 (14)